設(shè)i為虛數(shù)單位,復(fù)數(shù)
2+i
i2
在復(fù)平面上對應(yīng)的點在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:計算題,數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)i的冪運算化簡復(fù)數(shù)的分母,求出復(fù)數(shù)的對應(yīng)點即可.
解答: 解:i為虛數(shù)單位,復(fù)數(shù)
2+i
i2
=-2-i,
復(fù)數(shù)的對應(yīng)點為:(-2,-1).
復(fù)數(shù)對應(yīng)點在第四象限.
故選:C.
點評:本題考查復(fù)數(shù)的代數(shù)形式的混合運算,復(fù)數(shù)的幾何意義,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1≤x≤100},B={y|y=lgx,x∈A},則(∁UA)∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足(1+i)z=2-i(i為虛數(shù)單位),則|z+i|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)
2a+1
5
+
a+2
5
i是純虛數(shù),則實數(shù)a=( 。
A、-2
B、
1
2
C、-
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U是實數(shù)集R,M={x||2x-3|≥4},N={x|log
1
3
(x+2)≥0},則M∩N=( 。
A、{x|x≤-
3
2
}
B、{x|-2<x≤-
1
2
}
C、{x|-
3
2
≤x≤-1}
D、{x|-2<x≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|x2-2x-3<0},N={x|log2(1-x)<1},則M∩∁RN等于(  )
A、[-1,1]
B、(-1,0)
C、[1,3)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)z1=2+i,z2=1-i,那么
z1
z2
在復(fù)平面內(nèi)對應(yīng)的點位于第( 。┫笙蓿
A、一B、二C、三D、四

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
3-ai
i
(i為虛數(shù)單位且a<0)在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(4,a)(a>0)在拋物線C:y2=2px(p>0)上,P點到拋物線C的焦點F的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知圓E:x2+y2=2x,過圓心E作直線l與圓E和拋物線C自上而下依次交于A、B、C、D,如果|AB|+|CD|=2|BC|,求直線l的方程;
(Ⅲ)過點Q(4,2)的任一直線(不過P點)與拋物線C交于A、B兩點,直線AB與直線y=x+4交于點M,記直線PA、PB、PM的斜率分別為k1、k2、k3,問是否存在實數(shù)λ,使得k1+k2=λk3,若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案