分析 由條件利用二項(xiàng)式展開式的通項(xiàng)公式,求得結(jié)果.
解答 解:(1)若(x+$\frac{1}{x}$)n開式中第3項(xiàng)和第7項(xiàng)的二項(xiàng)式系數(shù)相等,則${C}_{n}^{2}$=${C}_{n}^{6}$,∴n=8,
故展開式通項(xiàng)公式為 Tr+1=${C}_{8}^{r}$x8-2r,令8-2r=-2,求得r=5,故展開式中x-2系數(shù)為${C}_{8}^{5}$=${C}_{8}^{3}$=56.
(2)若將函數(shù)f(x)=x5表示為f(x)=[-1+(x+1)]5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,
∴a3=${C}_{5}^{3}$•(-1)2=10.
(3)令x=1,可得(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開式中各項(xiàng)系數(shù)的和為(a+1)•(2-1)5=2,∴a=1,
故二項(xiàng)式(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5,即(x+$\frac{1}{x}$)(2x-$\frac{1}{x}$)5 ,它的通項(xiàng)公式為Tr+1=(x+$\frac{1}{x}$)•[${C}_{5}^{0}$•25•x5-${C}_{5}^{1}$•24•x3+${C}_{5}^{2}$•23•x-${C}_{5}^{3}$•22•x-1+${C}_{5}^{4}$•2•x-3-${C}_{5}^{5}$x-5],
求該展開式中x2的系數(shù)為-${C}_{5}^{1}$•24+${C}_{5}^{2}$•23=0.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{37}{21}$ | D. | $\frac{19}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=4x,y2=-4x | B. | y2=6x,y2=-6x | C. | y2=10x,y2=-10x | D. | y2=12x,y2=-12x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 50 | C. | 75 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{10}$,+∞) | B. | 0<a<$\frac{1}{10}$ | C. | 0<a≤1 | D. | a>l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(1)<f(-1)<f(0) | B. | f(1)<f(0)<f(-1) | C. | f(0)<f(-1)<f(1) | D. | f(-1)<f(0)<f(1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com