【題目】已知f(x)=x3+3x2+a(a為常數(shù)),在[﹣3,3]上有最小值3,那么在[﹣3,3]上f(x)的最大值是

【答案】57
【解析】解析:f′(x)=3x2+6x,令f′(x)=0,得3x(x+2)=0x=0,x=﹣2.
(i)當(dāng)0≤x≤3,或﹣3≤x≤﹣2時(shí),f′(x)≥0,f(x)單調(diào)遞增,
(ii)當(dāng)﹣2<x<0時(shí),f(x)單調(diào)遞減,由最小值為3知,最小為f(﹣3)或f(0)
f(﹣3)=(﹣3)3+3×(﹣3)2+a=a,f(0)=a,則a=3,
∴f(x)=x3+3x2+3,其最大值為f(﹣2)或f(3),
f(﹣2)=(﹣2)3+3×(﹣2)2+3=7,f(3)=33+3×32+3=57,則最大值為57.
所以答案是:57.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R, ,B={x|log3x≤2}. (Ⅰ)求A∩B;
(Ⅱ)求U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PD⊥底面ABCD,點(diǎn)M、N分別是棱AB、CD的中點(diǎn).
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點(diǎn)H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請求出H點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+ax+a)ex , (a為常數(shù),e為自然對數(shù)的底).
(1)當(dāng)a=0時(shí),求f′(2);
(2)若f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x﹣2y+m=0(m為確定的常數(shù))相切,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記所有非零向量構(gòu)成的集合為V,對于 , ∈V, ,定義V( , )=|x∈V|x =x |
(1)請你任意寫出兩個(gè)平面向量 , ,并寫出集合V( )中的三個(gè)元素;
(2)請根據(jù)你在(1)中寫出的三個(gè)元素,猜想集合V( , )中元素的關(guān)系,并試著給出證明;
(3)若V( , )=V( ),其中 ,求證:一定存在實(shí)數(shù)λ1 , λ2 , 且λ12=1,使得 1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

50

60

70



(1)畫出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測當(dāng)廣告費(fèi)支出為7百萬元時(shí)的銷售額.參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與曲線在第一象限和第三象限分別交于點(diǎn)和點(diǎn),分別由點(diǎn)、軸作垂線,垂足分別為、,記四邊形的面積為S.

求出點(diǎn)、的坐標(biāo)及實(shí)數(shù)的取值范圍;

當(dāng)取何值時(shí),S取得最小值,并求出S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin2x+2 cos2x﹣ ,函數(shù)g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.(0,1]
B.[1,2]
C.[ ,2]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù)).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案