(2012•邯鄲模擬)已知數(shù)列{an}滿足a1=1,a2=2對(duì)于任意的正整數(shù)n都有an•an+1≠1,anan+1an+2=an+an+1+an+2,則S100=
199
199
分析:再寫一式,兩式相減可推斷出an+3=an,進(jìn)而可知數(shù)列{an}是以3為周期的數(shù)列,通過a1=1,a2=2,求得a3,而100=3×33+1,故可知S100的答案.
解答:解:依題意可知,anan+1an+2=an+an+1+an+2,an-1anan+1=an-1+an+an+1,
兩式相減得anan+1(an+2-an-1)=an+2-an-1,
∵an•an+1≠1,
∴an+2-an-1=0,即an+3=an,
∴數(shù)列{an}是以3為周期的數(shù)列,
∵a1a2a3=a1+a2+a3,a1=1,a2=2,∴a3=3
∴S100=33×(1+2+3)+1=199
故答案為:199.
點(diǎn)評(píng):本題主要考查了數(shù)列的遞推式和數(shù)列的求和問題,解題的關(guān)鍵是找出數(shù)列的周期性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲模擬)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若?x∈R,f(x)<0或g(x)<0,則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲模擬)四棱錐P-ABCD的五個(gè)頂點(diǎn)都在一個(gè)球面上,其三視圖如圖所示,E、F分別是棱AB、CD的中點(diǎn),直線EF被球面所截得的線段長為2
2
,則該球表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲模擬)已知函數(shù)f(x)=2cosx•sin(x-
π
6
)-
1
2
].
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c且c=
3
,角C滿足f(C)=0,若sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲模擬)已知兩定點(diǎn)E(-2,0),F(xiàn)(2,0),動(dòng)點(diǎn)P滿足
PE
PF
=0
,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足
PM
=
MQ
,點(diǎn)M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足
ON
=
OA
+
OB
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲模擬)在空間給出下面四個(gè)命題(其中m、n為不同的兩條直線,α、β為不同的兩個(gè)平面)
①m⊥α,n∥α⇒m⊥n
②m∥n,n∥α⇒m∥α
③m∥n,n⊥β,m∥α⇒α⊥β
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
其中正確的命題個(gè)數(shù)有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案