【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國(guó)全面放開二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類型做出如下判斷:①建國(guó)以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國(guó)仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

【答案】A

【解析】

根據(jù)折線統(tǒng)計(jì)圖即可判斷.

①建國(guó)以來有一段時(shí)間年齡中位數(shù)低于20,為年輕型人口,所以①錯(cuò)誤;

②從2010年至2020年年齡中位數(shù)在30歲以上,為老齡型人口,正確,

③放開二孩政策之后我國(guó)年齡中位數(shù)在30歲以上,仍為老齡型人口,正確,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=an+1.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若,求數(shù)列{bn}的前n項(xiàng)和為Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的奇函數(shù),其中,則下 列關(guān)于函數(shù)的描述中,其中正確的是(

①將函數(shù)的圖象向右平移個(gè)單位可以得到函數(shù)的圖象;

②函數(shù)圖象的一條對(duì)稱軸方程為;

③當(dāng)時(shí),函數(shù)的最小值為;

④函數(shù)上單調(diào)遞增.

A.①③B.③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中滿足被3除余2且被5除余3的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列的項(xiàng)數(shù)是(

A.135B.134C.59D.58

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作圓的切線,已知,分別為切點(diǎn),直線恰好經(jīng)過橢圓的右焦點(diǎn)和下頂點(diǎn),則直線方程為___________;橢圓的標(biāo)準(zhǔn)方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天上有些恒星的亮度是會(huì)變化的,其中一種稱為造父(型)變星,本身體積會(huì)膨脹收縮造成亮度周期性的變化.第一顆被描述的經(jīng)典造父變星是在1784.

上圖為一造父變星的亮度隨時(shí)間的周期變化圖,其中視星等的數(shù)值越小,亮度越高,則此變星亮度變化的周期、最亮?xí)r視星等,分別約是(

A.5.5,3.7B.5.4,4.4C.6.5,3.7D.5.5,4.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

1)曲線相交于,兩點(diǎn),上異于,的點(diǎn),若直線的斜率為1,求直線的斜率;

2)若的左焦點(diǎn)為,右頂點(diǎn)為,直線.的直線相交于,在第一象限)兩點(diǎn),與相交于,是否存在使的面積等于的面積與的面積之和.若存在,求直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,三內(nèi)角A,B,C滿足

(Ⅰ)判斷△ABC的形狀;

(Ⅱ)若點(diǎn)D在線段AC上,且CD2DA,,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,是等邊三角形,,,,的中點(diǎn).

)證明:直線平面;

)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案