4.若集合A={lg1,lne},B={x∈Z|x2+x≤0},則集合C={z|z=x+y,x∈A,y∈B}所有真子集的個數(shù)為( 。
A.3B.7C.8D.15

分析 化簡集合A,B,C,從而由對于有限集合,我們有以下結(jié)論:若一個集合中有n個元素,則它有2n個子集求解.

解答 解:集合A={lg1,lne}={0,1},
B={x∈Z|x2+x≤0}={-1,0},
集合C={z|z=x+y,x∈A,y∈B}={-1,0,1},
故集合C={z|z=x+y,x∈A,y∈B}所有真子集的個數(shù)為23-1=7,
故選:B.

點(diǎn)評 本題考查了集合的子集個數(shù),若一個集合中有n個元素,則它有2n個子集,有(2n-1)個真子集,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在單調(diào)遞減等比數(shù)列{an}中,若a3=1,a2+a4=$\frac{5}{2}$,則a1=( 。
A.2B.4C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.四棱錐P-ABCD中,PA⊥底面ABCD,PA=2$\sqrt{3}$,BC=CD=2,∠ACB=∠ACD=$\frac{π}{3}$
(1)求證:BD⊥平面PAC;
(2)求三棱錐P-BDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)是定義在R上的函數(shù),對x∈R都有f(-x)=f(x),周期為4,當(dāng)x∈[-2,0]時,f(x)=($\frac{1}{3}$)x-6,若在區(qū)間(-2,6]內(nèi)關(guān)于x的f(x)-loga(x+2)=0(a>1)恰好有3個不同的實數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{\sqrt{4-{x}^{2}}-5}{3x+3}$的值域是{y|y$≥\frac{5+2\sqrt{22}}{9}$,或y$≤\frac{5-2\sqrt{22}}{9}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線y=k(x+2)與y=$\sqrt{{x}^{2}+1}$有兩個交點(diǎn),則k的取值范圍是($\frac{\sqrt{5}}{5}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}{bn}滿足a1=1,a2=x(x>0),bn=an•an+1,且{bn}是公比為q(q>0)的等比數(shù)列,設(shè)cn=a2n-1+a2n(n∈N*).
(1)求{cn}的通項公式;
(2)設(shè)dn=$\frac{lg{c}_{n+1}}{lg{c}_{n}}$,x=219.2-1,q=$\frac{1}{2}$,求數(shù)列{dn}的最大項和最小項的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法正確的是( 。
A.命題“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B.命題“函數(shù)$y=sin(x-\frac{3π}{2})$與函數(shù)y=cosx的圖象相同”是真命題
C.命題:“設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),如果P(X≤1)=0.8413,則P(-1<X<0)=0.6826”的逆否命題是真命題
D.命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點(diǎn)”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD為菱形,PD⊥平面ABCD,PD=AD=2,∠BAD=60°,E、E分別為BC、PA的中點(diǎn).
(1)求證:ED⊥平面PAD;
(2)求三棱錐P-DEF的體積.

查看答案和解析>>

同步練習(xí)冊答案