【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側(cè)面A1ABB1 , 且AA1=AB=2.

(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為 ,求銳二面角A﹣A1C﹣B的大。

【答案】
(1)證明:如下圖,

取A1B的中點D,連接AD,

因AA1=AB,則AD⊥A1B

由平面A1BC⊥側(cè)面A1ABB1,

且平面A1BC∩側(cè)面A1ABB1=A1B,

得AD⊥平面A1BC,又BC平面A1BC,

所以AD⊥BC

因為三棱柱ABC﹣﹣﹣A1B1C1是直三棱柱,

則AA1⊥底面ABC,

所以AA1⊥BC.

又AA1∩AD=A,從而BC⊥側(cè)面A1ABB1

又AB側(cè)面A1ABB1,故AB⊥BC


(2)解:連接CD,由(1)可知AD⊥平面A1BC,

則CD是AC在平面A1BC內(nèi)的射影

∴∠ACD即為直線AC與平面A1BC所成的角,則

在等腰直角△A1AB中,AA1=AB=2,且點D是A1B中點

,且

過點A作AE⊥A1C于點E,連DE

由(1)知AD⊥平面A1BC,則AD⊥A1C,且AE∩AD=A

∴∠AED即為二面角A﹣A1C﹣B的一個平面角,

且直角△A1AC中:

,

,

且二面角A﹣A1C﹣B為銳二面角

,即二面角A﹣A1C﹣B的大小為


【解析】(1)取A1B的中點D,連接AD,由已知條件推導(dǎo)出AD⊥平面A1BC,從而AD⊥BC,由線面垂直得AA1⊥BC.由此能證明AB⊥BC.(2)連接CD,由已知條件得∠ACD即為直線AC與平面A1BC所成的角,∠AED即為二面角A﹣A1C﹣B的一個平面角,由此能求出二面角A﹣A1C﹣B的大小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a∈R),曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直. (Ⅰ)試比較20162017與20172016的大小,并說明理由;
(Ⅱ)若函數(shù)g(x)=f(x)﹣k有兩個不同的零點x1 , x2 , 證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,已知點R的極坐標(biāo)為(2 , ),曲線C的參數(shù)方程為 (θ為參數(shù)).
(1)求點R的直角坐標(biāo),化曲線C的參數(shù)方程為普通方程;
(2)設(shè)P為曲線C上一動點,以PR為對角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長的最小值,及此時P點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=( xinωx+cosωx)cosωx﹣ ,其中ω>0,若f(x)的最小正周期為4π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)銳角三角形ABC中,(2a﹣c)cosB=bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為節(jié)能減排,用9萬元購進(jìn)一臺新設(shè)備用于生產(chǎn),第一年需運營費用2萬元,從第二年起,每年運營費用均比上一年增加3萬元,該設(shè)備每年生產(chǎn)的收入均為21萬元,設(shè)該設(shè)備使用了n(n∈N*)年后,盈利總額達(dá)到最大值(盈利額等于收入減去成本),則n等于(
A.6
B.7
C.8
D.7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為16,20,則輸出的a=(

A.0
B.2
C.4
D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC,PC于D,E兩點,PB=BC,PA=AB=1.

(1)求證:PC⊥平面BDE;
(2)求直線BE與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,其前n項和為Sn , 則下列結(jié)論正確的是(
A.若a1+a2>0,則a1+a3>0
B.若a1+a3>0,則a1+a2>0
C.若a1>0,則S2017>0
D.若a1>0,則S2016>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖某幾何體的三視圖是直角邊長為1的三個等腰直角三角形,則該幾何體的外接球的表面積為(
A.
B.
C.
D.3π

查看答案和解析>>

同步練習(xí)冊答案