已知命題P:函數(shù)f(x)=(2a-5)x是R上的減函數(shù).命題Q:在x∈R時(shí),不等式x2-ax+2>0恒成立.若命題“P∪Q”是真命題,求實(shí)數(shù)a的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:分別求出命題P,Q下的a的取值,根據(jù)P∪Q為真命題,分成P真Q真,P真Q假,P假Q(mào)真,這幾種情況,求每種情況下的a的取值,然后求并集即可.
解答: 解:命題P:函數(shù)f(x)=(2a-5)x是R上的減函數(shù);
∴0<2a-5<1;
5
2
<a<3
;
命題Q:在x∈R時(shí),不等式x2-ax+2>0恒成立;
∴△=a2-8<0,解得-2
2
<a<2
2
;
∵P∪Q為真命題;
∴若P真Q真:
5
2
<a<2
2
;
若P真Q假:2
2
≤a<3
;
若P假Q(mào)真:-2
2
<a≤
5
2
;
綜上得a的取值范圍為:(-2
2
,3)
點(diǎn)評(píng):考查指數(shù)函數(shù)的單調(diào)性,一元二次不等式的解和判別式△的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若U={1,2,3,4,5,6,7,8},A={1,3,4},B={5,6,7},則(∁UA)∩(∁UB)=( 。
A、{2,8}
B、{2,6,8}
C、{1,3,5,7}
D、{1,2,3,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+x2-mx
(1)若m=3,求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(1)求a,b的值.
(2)設(shè)g(x)=
f′(x)
ex
,求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l的參數(shù)方程為
x=3+tcosα
y=4+tsinα
(t為參數(shù),α為傾斜角),圓C的參數(shù)方程為
x=1+2cosθ
y=-1+2sinθ
(θ為參數(shù)).
(1)若直線l經(jīng)過(guò)圓C的圓心,求直線l的斜率.
(2)若直線l與圓C交于兩個(gè)不同的點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax-1,a>0
(1)當(dāng)a=4,求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

南海中學(xué)校園內(nèi)建有一塊矩形草坪ABCD,AB=50米,BC=25
3
米,為了便于師生平時(shí)休閑散步,總務(wù)科將在這塊草坪內(nèi)鋪設(shè)三條小路OE、EF和OF,考慮到校園整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的面積S表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)在△OEF區(qū)域計(jì)劃種植海南省花三角梅,請(qǐng)你幫總務(wù)科計(jì)算△OEF面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,且橢圓C上的點(diǎn)到原點(diǎn)的距離的最大值為
3

(1)求橢圓C的方程;
(2)若動(dòng)點(diǎn)P滿足
OP
=
OM
+3
ON
,其中M、N是橢圓上不同兩點(diǎn),直線OM、ON的斜率之積為-
1
3
,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案