【題目】如圖,已知所在的平面, 的直徑, 上一點(diǎn),且中點(diǎn), 中點(diǎn).

(1)求證: ;

(2)求證:

(3)求三棱錐的體積.

【答案】(1)見(jiàn)解析(2) 見(jiàn)解析(3)

【解析】試題分析:(1根據(jù)直線與平面平行的判定定理可知,只需證與面內(nèi)一直線平行即可,根據(jù)中位線定理可知,滿足定理所需條件; 2,的直徑,,則,由于所以;(3根據(jù),即為三棱錐的高,將三棱錐的體積轉(zhuǎn)化成三棱錐的體積,根據(jù)錐體的體積公式進(jìn)行求解即可.

試題解析(1)證明:在三角形中, 中點(diǎn), 中點(diǎn),

, 平面平面,∴

(2)證明:∵, 平面,∴,

又∵的直徑,∴,

,∴

,∴;

(3)∵,∴,

中,∵,∴,

【方法點(diǎn)晴】本題主要考查線面平行的判定定理、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】光線通過(guò)一塊玻璃,其強(qiáng)度要損失10%,把幾塊這樣的玻璃重疊起來(lái),設(shè)光線原來(lái)的強(qiáng)度為,通過(guò)塊玻璃以后強(qiáng)度為.

)寫出關(guān)于的函數(shù)關(guān)系式;

)通過(guò)多少塊玻璃以后,光線強(qiáng)度減弱到原來(lái)的以下.lg3≈0.4771.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)直線 與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ) 在(Ⅱ)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過(guò)點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O是坐標(biāo)原點(diǎn),橢圓C:x2+3y2=6的左右焦點(diǎn)分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點(diǎn),
(1)若直線PQ過(guò)橢圓C的右焦點(diǎn)F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(2)若P,Q兩點(diǎn)使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是拋物線上兩點(diǎn),且兩點(diǎn)橫坐標(biāo)之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點(diǎn),且,求方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究鐘表與三角函數(shù)的關(guān)系,以9點(diǎn)與3點(diǎn)所在直線為x軸,以6點(diǎn)與12點(diǎn)為y軸,設(shè)秒針針尖指向位置P(x,y),若初始位置為P0 , ),秒針從P0(注此時(shí)t=0)開(kāi)始沿順時(shí)針?lè)较蜃邉?dòng),則點(diǎn)P的縱坐標(biāo)y與時(shí)間t(秒)的函數(shù)關(guān)系為(
A.y=sin( t+
B.y=sin( t﹣
C.y=sin(﹣ t+
D.y=sin(﹣ t﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為2.

(1)求拋物線的方程;

(2)若直線與圓切于點(diǎn),與拋物線切于點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年,在國(guó)家創(chuàng)新驅(qū)動(dòng)戰(zhàn)略下,北斗系統(tǒng)作為一項(xiàng)國(guó)家高科技工程,一個(gè)開(kāi)放型的創(chuàng)新平臺(tái),1400多個(gè)北斗基站遍布全國(guó),上萬(wàn)臺(tái)套設(shè)備組成星地“一張網(wǎng)”,國(guó)內(nèi)定位精度全部達(dá)到亞米級(jí),部分地區(qū)達(dá)到分米級(jí),最高精度甚至可以達(dá)到厘米或毫米級(jí)。最近北斗三號(hào)工程耗資9萬(wàn)元建成一小型設(shè)備,已知這臺(tái)設(shè)備從啟用的第一天起連續(xù)使用,第天的維修保養(yǎng)費(fèi)為元,使用它直至“報(bào)廢最合算”(所謂“報(bào)廢最合算”是指使用這臺(tái)儀器的平均每天耗資最少)為止,一共使用了多少天,平均每天耗資多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=.

(1)求f(x)的解析式;

(2)判斷f(x)的單調(diào)性;

(3)若對(duì)任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案