已知A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∪B=A,則a=______.
∵A={x|x2-3x+2=0}={1,2},B={x|x2-ax+a-1=0}={x|[x-(a-1)](x-1)}≠∅
又A∪B=A,則B⊆A
若B中方程僅有一解則有B={1},即a-1=1,解之:a=2符合題意
若B中方程有兩解,則有B={1,2},即:
1+2=a
1×2=a-1
△>0
,解之:a=3
綜上可知:a的值為a=2或a=3.
故答案為:a=2或a=3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實(shí)數(shù)P的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案