若sin2θ+2cosθ=-2,則cosθ=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:利用同角三角函數(shù)的基本關(guān)系可得(cosθ-3)(cosθ+1)=0,由此解得cosθ 的值.
解答: 解:∵sin2θ+2cosθ=-2,
∴1-cos2θ+2cosθ=-2,(cosθ-3)(cosθ+1)=0,
解得cosθ=-1,或 cosθ=3(舍去),
故答案為:-1.
點(diǎn)評:本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x,x<0
f(x-1)+1,x≥0
,則f(2014)=( 。
A、2014
B、
4029
2
C、2015
D、
4031
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:過已知平面外一點(diǎn)且平行于該平面的直線都在過已知點(diǎn)平行于該平面的平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)為奇函數(shù),且對定義域內(nèi)的任意x都有f(1+x)=-f(1-x).當(dāng)x∈(2,3)時,f(x)=log2(x-1),給出以下4個結(jié)論:
①函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)成中心對稱;
②函數(shù)y=|f(x)|是以2為周期的周期函數(shù);
③當(dāng)x∈(-1,0)時,f(x)=-log2(1-x);
④函數(shù)y=f(|x|)在(k,k+1)( k∈Z)上單調(diào)遞增.
其中所有正確結(jié)論的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集X={x1,x2,…,xn}(其中xi>0,i=1,2,…,n,n≥3),若對任意的xk∈X(k=1,2,…n),都存在xi,xj∈X(xi≠xj),使得下列三組向量中恰有一組共線:
①向量(xi,xk)與向量(xk,xj);
②向量(xi,xj)與向量(xj,xk);
③向量(xk,xi)與向量(xi,xj),則稱X具有性質(zhì)P,例如{1,2,4}具有性質(zhì)P.
(1)若{1,3,x}具有性質(zhì)P,則x的取值為
 

(2)若數(shù)集{1,3,x1,x2}具有性質(zhì)P,則x1+x2的最大值與最小值之積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC的邊BC上任一點(diǎn),且滿足
AP
=x
AB
+y
AC
,x、y∈R,則
1
x
+
4
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|-2≤x≤8},n={x|x2-3x+2≤0},在集合M中任取一個元素x,則“x∈M∩N”的概率是( 。
A、
1
10
B、
1
6
C、
3
10
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線m在平面α內(nèi),直線n在平面β內(nèi),下列命題正確的是( 。
A、m⊥n⇒α⊥β
B、α∥β⇒m∥β
C、m⊥n⇒m⊥β
D、m∥n⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O的半徑為2,△ABC是其內(nèi)接三角形,BC=3,則
AC
2
-
AB
2
的最大值為( 。
A、6B、9C、10D、12

查看答案和解析>>

同步練習(xí)冊答案