在一次研究性學(xué)習(xí)中,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R),三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)
給出命題:你認(rèn)為上述三個(gè)命題中正確的個(gè)數(shù)有( 。
甲:函數(shù)f(x)的值域?yàn)椋?1,1);乙:若x1≠x2,則一定有f(x1)≠f(x2);
丙:若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)),則fn(x)≥
x
1+n|x|
對(duì)任意n∈N*恒成立.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)
考點(diǎn):命題的真假判斷與應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:甲:利用函數(shù)的奇偶性單調(diào)性即可得出;
乙:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出;
丙:利用函數(shù)的奇偶性、數(shù)學(xué)歸納法即可得出.
解答: 解:甲:由函數(shù)f(x)=
x
1+|x|
(x∈R),當(dāng)x≥0時(shí),f(x)=
x
1+x
,∴0≤f(x)<1;∵f(-x)=-f(x),∴當(dāng)x<0時(shí),∴-1<f(x)<0.
因此值域?yàn)椋?1,1),正確.
乙:當(dāng)x≥0時(shí),f(x)=
x
1+x
,f′(x)=
1
(1+x)2
>0,∴函數(shù)f(x)單調(diào)遞增,f(x)≥0;同理,當(dāng)x<0時(shí),函數(shù)f(x)單調(diào)遞增,且f(x)<0.
∴若x1≠x2,則一定有f(x1)≠f(x2),正確;
丙:∵函數(shù)f(x)是奇函數(shù),因此只考慮0<x即可.
f1(x)=f(x)=
x
1+x
,因此當(dāng)n=1時(shí)成立.當(dāng)n=2時(shí),f2(x)=f(f1(x))=
f1(x)
1+f1(x)
=
x
1+x
1+
x
1+x
=
x
1+2x
也成立.
假設(shè)當(dāng)n=k時(shí)成立,fk(x)
x
1+kx

則當(dāng)n=k+1時(shí),fk+1(x)=f(fk(x))=
fk(x)
1+fk(x)
x
1+kx
1+
x
kx+1
=
x
1+(k+1)x
,也成立.因此正確.
綜上可得:甲乙丙都正確.
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性單調(diào)性、數(shù)學(xué)歸納法,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方形ABCD被兩垂直線(xiàn)段EF,GH分割為四個(gè)小矩形,P是EF和GH的交點(diǎn).若矩形PFCH的面積恰是矩形AGPE面積的2倍,則∠HAF的大小是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入如下四個(gè)函數(shù)①f(x)=sinx②f(x)=cosx③f(x)=e|x|④f(x)=|lnx|則輸出的函數(shù)的個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在各棱長(zhǎng)都相等的直三棱柱ABC-A1B1C1中,E,F(xiàn)分別為AB,CC1的中點(diǎn).
(Ⅰ)求證:CE∥平面AB1F;
(Ⅱ)求直線(xiàn)A1F與平面AB1F所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)某年出版的《市場(chǎng)報(bào)》報(bào)道:隨著我國(guó)國(guó)民經(jīng)濟(jì)的快速增長(zhǎng),人們的經(jīng)濟(jì)收入明顯提高,生活越來(lái)越好,據(jù)有關(guān)部門(mén)抽樣調(diào)查的結(jié)果顯示,我國(guó)城鄉(xiāng)居民汽車(chē)擁有量比前一年翻了一番.某種汽車(chē),購(gòu)車(chē)費(fèi)是10萬(wàn)元,每年使用的保險(xiǎn)費(fèi)、燃油費(fèi)約為0.9萬(wàn)元,維修費(fèi)第一年是0.2萬(wàn)元,以后逐年增0.2萬(wàn)元.試問(wèn)這種汽車(chē)使用多少年后,它的平均費(fèi)用最少?最少為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}.a(chǎn)1=2,當(dāng)n≥2時(shí),
an
2n
=
an-1
2n-1
+
3
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)Cn=2an-3•2n,設(shè)Tn為數(shù)列{Cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,3是3a與32b等比中項(xiàng),
1
a
+
1
b
的最小值為( 。
A、4
B、3+2
2
C、
3+2
2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x
x+1
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若p滿(mǎn)足
x2
4-y2
=1(y≥0),則
y-2
x-4
的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案