計(jì)算:0.008
1
3
-(
27
8
)-
2
3
+
3
3
3
2
612
考點(diǎn):有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用有理指數(shù)冪以及根式的運(yùn)算法則求解即可.
解答: 解:0.008
1
3
-(
27
8
)-
2
3
+
3
3
3
2
612

=5-1-
4
9
+3
1
2
×
3
1
3
2
1
3
×2
1
3
×3
1
6

=
1
5
-
4
9
+3
=
124
45
點(diǎn)評:本題考查根式與有理指數(shù)冪的運(yùn)算,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意四項(xiàng),則剩下三項(xiàng)構(gòu)成等差數(shù)列的概率為(  )
A、
6
35
B、
9
35
C、1或
9
35
D、1或
6
35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)上為增函數(shù),若關(guān)于x的方程f(b)=f(|2x-1|)有且只有一個(gè)實(shí)根,則實(shí)數(shù)b的取值范圍是( 。
A、b≥2
B、b≥0
C、b≤-1或b=0
D、b≥1或b≤-1或b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。
①若f(3x)=4xlog23+2,則f(2)+f(4)+…+f(28)=180;
②函數(shù)f(x)=tan2x的對稱中心是(
2
,0)(k∈Z);
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④設(shè)常數(shù)α使方程sinx+
3
cosx=α在閉區(qū)間[0,2π]上恰有三個(gè)解x1,x2,x3,則x1+x2+x3=
3
A、①③B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin(π-2ωx)-sin(
π
2
-2ωx)(ω>0)的圖象與x軸相鄰兩交點(diǎn)的距離為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(A)=2,求
b-c
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn),拋物線y2=4cx(c>0)的準(zhǔn)線交該雙曲線于A,B兩點(diǎn),若△ABF是銳角三角形且c2=a2+b2,則該雙曲線離心率e的取值范圍是( 。
A、(1,
3
)
B、(1+
2
,+∞)
C、(
3
,2
2
)
D、(1,1+
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:a*b的運(yùn)算為a*b=
|b|,a≥b
a,a<b
,設(shè)f(x)=(0*x)x-(2*x),則f(x)在區(qū)間[-2,3]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)正方體的表面積為S1,其外接球的表面積為S2,則
S1
S2
=
 

查看答案和解析>>

同步練習(xí)冊答案