討論函數(shù)f(x)=a(a為常數(shù))的奇偶數(shù).
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:對于a=0與a≠0分類討論即可得出.
解答: 解:函數(shù)f(x)=a(a為常數(shù))的定義域為R,關(guān)于原點對稱.
當(dāng)a=0時,滿足f(-x)=±f(x),此時函數(shù)f(x)既是奇函數(shù)又是偶函數(shù);
當(dāng)a≠0時,滿足f(-x)=f(x),此時函數(shù)f(x)是偶函數(shù).
點評:本題考查了函數(shù)的奇偶性、分類討論的思想方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正整數(shù)x1,x2,x3,x4,x5滿足任取四個數(shù)求和構(gòu)成的集合為{44,45,46,47},求正整數(shù)x1,x2,x3,x4,x5的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司一年購買某種貨物400噸,每次都購買x噸,運費為4萬元/次,一年的總存儲費用為4x萬元,要使一年的總費用與總存儲費用之和最小,則x=(  )
A、10B、20C、40D、80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C與
x2
12
-
y2
8
=1有相同漸近線,且與x軸一個交點為(
3
,0).
(1)求雙曲線C方程;
(2)斜率為2的直線l被該雙曲線截得弦長4,求直線L在y軸上的截距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c是Rt△ABC的三邊,c為斜邊,若a2(a+b)+b2(c+a)+c2(b+a)≥kabc恒成立,則k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}滿足:a1=2,an+1=Sn+n,n∈N*,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
2
x,g(x)=log
1
2
x,記函數(shù)h(x)=
f(x),f(x)≤g(x)
g(x),f(x)>g(x)
,則不等式h(x)≥
2
2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某輪船在航行中每小時所耗去的燃料費與該船航行速度的立方成正比,且比例系數(shù)為a,其余費用與船的航行速度無關(guān),約為每小時b元,若該船以速度v千米/時航行,航行每千米耗去的總費用為y(元),則y與v的函數(shù)解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間[-2,2]上的偶函數(shù),當(dāng)0≤x≤2時,f(x)=x2-2x+1,若在區(qū)間[-2,2]內(nèi),函數(shù)g(x)=f(x)-kx-2k有4個零點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案