已知定義在R上的奇函數(shù)f(x)在[0,+∞)上單調(diào)遞增,若f(a-3)+f(3a-5)>0,求常數(shù)a的取值范圍.
考點:函數(shù)單調(diào)性的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由奇函數(shù)的性質(zhì)可得其在R上單調(diào)遞增,進而化f(a-3)+f(3a-5)>0可化為f(a-3)>f(-3a+5),利用單調(diào)性求解.
解答: 解:∵定義在R上的奇函數(shù)f(x)在[0,+∞)上單調(diào)遞增,
∴函數(shù)f(x)在R上單調(diào)遞增,
又∵f(a-3)+f(3a-5)>0可化為f(a-3)>f(-3a+5),
∴a-3>-3a+5,
解得,a>2.
點評:本題考查了函數(shù)的奇偶性與單調(diào)性的聯(lián)合應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,2a+1},集合B={-4,3},且A∩B={3},則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠ABC的對邊分別為a、b、c,且a=
3
2
b,∠B=∠C,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-
4
x
,當(dāng)x∈[1,4]時,函數(shù)的最大值與最小值的差是( 。
A、-6B、6C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-1|+x.
(1)畫出圖象;
(2)寫出它的單調(diào)區(qū)間;
(3)當(dāng)x∈{-3,
3
2
}時,求函數(shù)y=f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,O為B1D1的中點,則AC與DD1所成的角為
 
,AC與D1C1所成的角為
 
,AC與B1D1所成的角為
 
,AC與A1B所成的角為
 
,A1B與B1D1所成的角為
 
,AC與BO所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=m與函數(shù)y=|x2-6x|圖象的交點個數(shù)為4個,求m的取值范圍并作出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx2+cx+d有兩個極值點x1、x2,且|x1-x2|>|f(x1)-f(x2)|,且f(x1)=x1,則關(guān)于3af(x)2+2bf(x)+c=0的不同實數(shù)根有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(-x2+ax)ex(a∈R,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x∈(-1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案