用秦九韶算法計算多項式f(x)=3x6+5x5+6x4+79x3-8x2+35x+12在x=-4時的值時,v2的值為( 。
A、-57B、-22
C、34D、74
考點:秦九韶算法
專題:算法和程序框圖
分析:首先把一個n次多項式f(x)寫成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化簡,求n次多項式f(x)的值就轉化為求n個一次多項式的值,求出V3的值.
解答: 解:∵f(x)=3x6+5x5+6x4+79x3-8x2+35x+12
=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v0=a6=3,
v1=v0x+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
∴V2的值為34;
故選:C.
點評:本題考查排序問題與算法的多樣性,通過數(shù)學上的算法,寫成程序,然后求解,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若f(x)+2f(-x)=x2-x,則f(2)=(  )
A、
2
3
B、4
C、-2
D、
10
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的奇函數(shù)f(x)為減函數(shù),設a≤-b,給出下列不等式,其中正確不等式的序號為( 。
①f(a)•f(-a)≤0,
②f(b)•f(-b)≥0,
③f(a)+f(b)≤f(-a)+f(-b),
④f(a)+f(b)≥f(-a)+f(-b)
A、①④B、②④C、①③D、②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的不等式(1+k)x2+kx+k<x2+1的解集為空集,則實數(shù)k的范圍為( 。
A、[
4
3
,+∞)
B、(0,+∞)
C、[0,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A=R,B=R+,若f:x→2x-1是從集合A到B的一個映射,則A中的元素2在B中對應的元素為(  )
A、-1B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若定義在R上的函數(shù)f(x)滿足:對任意a,b∈R有f(a+b)=f(a)+f(b)+1.
(1)求f(0)的值;
(2)令F(x)=f(x)+1,判斷y=F(x)的奇偶性;
(3)若x>0有f(x)>-1,解不等式f(x)+f(x+5)>-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=2×3n-1,
(1)求a1,a2,a3;
(2)求這個數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+(4a-4)x+a2-8a+4(x∈R),g(x)與f(x)圖象關于直線x=1對稱.
(Ⅰ)求g(x)解析式;
(Ⅱ)設函數(shù)h(x)=2x3+3ag(x),如果h(x)在開區(qū)間(0,1)上存在極小值,求a的取值范圍;
(Ⅲ)若關于x的不等式g(x)≥x+a2-5a+11在區(qū)間[0,2]有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD底面ABCD是直角梯形,AB⊥AD,且AD與BC平行,AD=2AB=2BC=2,△PAD是以P為直角頂點的等腰直角三角形,且二面角P-AD-C為直二面角.
(1)求證:PD⊥平面PAB;
(2)求AD與平面PCD所成角大。

查看答案和解析>>

同步練習冊答案