(14分) 已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),判斷方程實(shí)根個(gè)數(shù).
(3)若時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

(1);(2)在內(nèi)有且僅有一個(gè)實(shí)數(shù)根
(3)

解析試題分析:(1)利用導(dǎo)數(shù)的幾何意義得到導(dǎo)數(shù)的值,切點(diǎn)坐標(biāo)得到結(jié)論。
(2)時(shí),令,
求解導(dǎo)數(shù),并判定又,
內(nèi)有且僅有一個(gè)零點(diǎn)進(jìn)而得到結(jié)論。
(3)恒成立, 即恒成立,
,則當(dāng)時(shí),恒成立,
分離參數(shù)法構(gòu)造新函數(shù)利用求解的最小值得到參數(shù)m的范圍。
(1)時(shí),,切點(diǎn)坐標(biāo)為
切線方程為
(2)時(shí),令
,上為增函數(shù)
,
內(nèi)有且僅有一個(gè)零點(diǎn)
內(nèi)有且僅有一個(gè)實(shí)數(shù)根
(或說明也可以)
(3)恒成立, 即恒成立,
,則當(dāng)時(shí),恒成立,
,只需小于的最小值,
,
, , 當(dāng)時(shí)
上單調(diào)遞減,的最小值為
的取值范圍是
考點(diǎn):本題主要是考查導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,求解最值和導(dǎo)數(shù)幾何意義的綜合運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能將不等式的恒成立問題轉(zhuǎn)化為哈雙女戶的最值來處理,并得到參數(shù)的范圍,同時(shí)要理解導(dǎo)數(shù)的幾何意義表示的為切線的斜率。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點(diǎn),且直線AB的斜率恒大于1,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)設(shè)函數(shù).
⑴ 求的極值點(diǎn);
⑵ 若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
⑶ 已知當(dāng)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時(shí),;當(dāng)時(shí),.
(1)求在[0,1]內(nèi)的值域;
(2)為何值時(shí),不等式在[1,4]上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,函數(shù),
(其中均為常數(shù),且),當(dāng)時(shí),函數(shù)取得極小值.
均在函數(shù)的圖像上(其中的導(dǎo)函數(shù)).
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)過曲線C:外的點(diǎn)A(1,0)作曲線C的切線恰有兩條,
(Ⅰ)求滿足的等量關(guān)系;
(Ⅱ)若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),(),曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)(注意:仙中、一中、八中的學(xué)生三問全做,其他學(xué)校的學(xué)生只做前兩問)
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:

查看答案和解析>>

同步練習(xí)冊答案