設(shè)f(x)是R上的偶函數(shù),且在(0,+∞)上是減函數(shù),若x1<0且x1+x2>0,則


  1. A.
    f(-x1)>f(-x2
  2. B.
    f(-x1)=f(-x2
  3. C.
    f(-x1)<f(-x2
  4. D.
    f(-x1)與f(-x2)大小不確定
A
因為x1<0且x1+x2>0,所以x1<0且x2>-x1>0,又在(0,+∞)上是減函數(shù),所以f(-x1)>f(x2)=f(-x2),即f(-x1)>f(-x2),故選A。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義域為R的周期函數(shù),且f(x)最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時,f(x)=-x.
(1)判定f(x)的奇偶性;
(2)試求出函數(shù)f(x)在[-1,2]上的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)三模)已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,b=
12
,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域是R,對于任意實數(shù)m,n,恒有f(m+n)=f(m)+f(n),
(1)求證f(0)=0;
(2)判斷f(x)在R上的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,數(shù)學(xué)公式,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市嘉定區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知k∈R,a>0且a≠1,b>0且b≠1,函數(shù)f(x)=ax+k•bx
(1)如果實數(shù)a、b滿足a>1,ab=1,試判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)設(shè)a>1>b>0,k≤0,判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若a=2,,且k>0,問函數(shù)f(x)的圖象是不是軸對稱圖形?如果是,求出函數(shù)f(x)圖象的對稱軸;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案