分析 可以看出x增大時(shí),$-\frac{1}{x}$增大,從而f(x)增大,從而得出該函數(shù)在(-∞,0)內(nèi)單調(diào)遞增.根據(jù)增函數(shù)的定義,設(shè)任意的x1<x2<0,然后作差,通分,證明f(x1)<f(x2)即可得出f(x)在(-∞,0)內(nèi)單調(diào)遞增.
解答 解:x增大時(shí),$\frac{1}{x}$減小,$-\frac{1}{x}$增大,f(x)增大,∴f(x)在(-∞,0)內(nèi)單調(diào)遞增,證明如下:
設(shè)x1<x2<0,則:
$f({x}_{1})-f({x}_{2})=\frac{1}{{x}_{2}}-\frac{1}{{x}_{1}}=\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$;
∵x1<x2<0;
∴x1-x2<0,x1x2>0;
∴f(x1)<f(x2);
∴f(x)在(-∞,0)內(nèi)單調(diào)遞增.
點(diǎn)評(píng) 考查增函數(shù)的定義,以及根據(jù)增函數(shù)的定義判斷并證明一個(gè)函數(shù)為增函數(shù)的方法和過(guò)程,作差的方法比較f(x1),f(x2),作差后,是分式的一般要通分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{10}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | Y=x-5 | B. | y=x+3 | C. | y=x-5 | D. | y=x+5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com