4.求函數(shù)y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的反函數(shù).

分析 由函數(shù)y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$=1-$\frac{2}{1{0}^{2x}+1}$(x∈R),y∈(-1,1).解得x=$\frac{1}{2}lg\frac{1+y}{1-y}$,把x與y互換即可得出.

解答 解:由函數(shù)y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$=$\frac{1{0}^{2x}-1}{1{0}^{2x}+1}$=1-$\frac{2}{1{0}^{2x}+1}$(x∈R),y∈(-1,1).
解得102x=$\frac{1+y}{1-y}$,解得x=$\frac{1}{2}lg\frac{1+y}{1-y}$,
把x與y互換可得:y=$\frac{1}{2}lg\frac{1+x}{1-x}$.
∴函數(shù)y=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$的反函數(shù)是y=$\frac{1}{2}lg\frac{1+x}{1-x}$.x∈(-1,1).

點(diǎn)評 本題考查了數(shù)列的周期性與轉(zhuǎn)化能力,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.化簡:(2$\frac{1}{4}$)0.5+(0.1)-1-(2$\sqrt{2}$)${\;}^{-\frac{2}{3}}$-($\sqrt{3}$-1)0=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知三點(diǎn)A(a,0),B(0,a+4),C(1,3),若過點(diǎn)C的直線l平行于直線AB,且直線l過原點(diǎn),則實(shí)數(shù)a的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)定義在自然數(shù)集上,且對任意x∈N*,都有f(x)=f(x-1)+f(x+1),其中f(1)=2008,問f(x)是不是周期函數(shù)?若是周期函數(shù),求出它的一個(gè)周期,并求f(2008).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求下列函數(shù)的定義域.
(1)y=$\sqrt{sin(cosx)}$;
(2)y=lg(2sinx-1)+$\sqrt{1-2cosx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若f(x)=cosx(sinx+1)+ln2,則f′(x)=cos2x-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=x3+ax2+bx+c,若f(x)在(-1,0)上單調(diào)遞減,則a2+b2的取值范圍為$[{\frac{9}{5},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;
(2)已知函數(shù)f(x)滿足f(x)-2f(x)=x2-3x,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=1-$\frac{1}{x}$,x∈(-∞,0),判斷f(x)的單調(diào)性并用定義證明.

查看答案和解析>>

同步練習(xí)冊答案