相關(guān)習題
 0  202699  202707  202713  202717  202723  202725  202729  202735  202737  202743  202749  202753  202755  202759  202765  202767  202773  202777  202779  202783  202785  202789  202791  202793  202794  202795  202797  202798  202799  202801  202803  202807  202809  202813  202815  202819  202825  202827  202833  202837  202839  202843  202849  202855  202857  202863  202867  202869  202875  202879  202885  202893  266669 

科目: 來源: 題型:

下列命題正確的是( 。
①平行于同一平面的兩直線平行;
②垂直于同一平面的兩直線平行;
③平行于同一直線的兩平面平行;
④垂直于同一直線的兩平面平行.
A、①②B、③④C、①③D、②④

查看答案和解析>>

科目: 來源: 題型:

設(shè)a為大于1的常數(shù),函數(shù)f(x)=
logax,x>0
ax,x≤0
,若關(guān)于x的方程f2(x)-bf(x)=0恰有三個不同的實數(shù)解,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系中,已知A(1,0),B(0,1),C(2,5),求:
(1)2
AB
+
AC
的模;
(2)cos∠BAC.

查看答案和解析>>

科目: 來源: 題型:

2009年北京國慶閱兵式上舉行升旗儀式,如圖,在坡度為15°的觀禮臺上,某一列座位與旗桿在同一垂直于地面的平面上,在該列的第一排B處和最后一排A處測得旗桿頂端的仰角為15°,且第一排和最后一排的距離為20
6
米,求旗桿CD的高度.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
ax+b
x
ex,a,b∈R,且a>0
(1)若函數(shù)f(x)在x=-1處取得極值
1
e
,試求函數(shù)f(x)的解析式及單調(diào)區(qū)間;
(2)設(shè)g(x)=a(x-1)ex-f(x),g′(x)為g(x)的導函數(shù),若存在x0∈(1,+∞),使g(x0)+g′(x0)=0成立,求
b
a
的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,在圓O中,已知弦AB=4,弦AC=6,那么
AO
BC
的值為( 。
A、10
B、2
13
C、
10
D、-10

查看答案和解析>>

科目: 來源: 題型:

在學習數(shù)學的過程中,我們通常運用類比猜想的方法研究問題.
(1)已知動點P為圓O:x2+y2=r2外一點,過P引圓O的兩條切線PA、PB,A、B為切點,若
PA
PB
=0,求動點P的軌跡方程;
(2)若動點Q為橢圓M:
x2
9
+
y2
4
=1外一點,過Q引橢圓M的兩條切線QC、QD,C、D為切點,若
QC
QD
=0,求出動點Q的軌跡方程;
(3)在(2)問中若橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),其余條件都不變,那么動點Q的軌跡方程是什么(直接寫出答案即可,無需過程).

查看答案和解析>>

科目: 來源: 題型:

如圖,設(shè)F為拋物線y2=2px(p>0)的焦點,P是拋物線上一點,Q為線段OF的垂直平分線上一點,且點Q到拋物線的準線l的距離為
3
2

(1)求拋物線的方程;
(2)設(shè)點M的坐標為(3,0),是否垂直于x軸的直線l′被以PM為直徑的圓截得的弦長為定值?若存在,求直線l′的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,B為短軸的一個端點,E是橢圓C上的一點,滿足OE=OF1+
2
2
OB
,且△EF1F2的周長為2(
2
+1).
(1)求橢圓C的方程;
(2)設(shè)點M是線段OF2上的一點,過點F2且與x軸不垂直的直線l交橢圓C于P、Q兩點,若△MPQ是以M為頂點的等腰三角形,求點M到直線l距離的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
(1)若D是BC的中點.求證:AD⊥CC1;
(2)過側(cè)面BB1C1C的對角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C;
(3)若截面MBC1⊥側(cè)面BB1C1C..求證:AM=MA1

查看答案和解析>>

同步練習冊答案