相關(guān)習(xí)題
 0  208710  208718  208724  208728  208734  208736  208740  208746  208748  208754  208760  208764  208766  208770  208776  208778  208784  208788  208790  208794  208796  208800  208802  208804  208805  208806  208808  208809  208810  208812  208814  208818  208820  208824  208826  208830  208836  208838  208844  208848  208850  208854  208860  208866  208868  208874  208878  208880  208886  208890  208896  208904  266669 

科目: 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an+log 
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,角A,B,C,的對邊分別為a,b,c.已知向量
m
=(2cos
A
2
,sin
A
2
),
n
=(cos
A
2
,-2sin
A
2
),
m
n
=-1.
(1)求cosA的值;
(2)若a=2
3
,求△ABC周長的范圍.

查看答案和解析>>

科目: 來源: 題型:

某研究小組在電腦上進(jìn)行人工降雨摸擬試驗,準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其試驗數(shù)據(jù)統(tǒng)計如下:
方式實施地點大雨中雨小雨摸擬試驗總次數(shù)
A4次6次2次12次
B3次6次3次12次
C2次2次8次12次
假設(shè)甲、乙、丙三地實施的人工降雨彼此互不影響.
(1)求甲、乙兩地恰為中雨且丙地為小雨的概率;
(2)考慮到旱情和水土流失,如果甲地恰需中雨即能達(dá)到理想狀態(tài),乙地必須是大雨才能達(dá)到理想狀態(tài),丙地只要是小雨或中雨就能達(dá)到理想狀態(tài),求降雨量達(dá)到理想狀態(tài)的地方個數(shù)的概率分布與期望.

查看答案和解析>>

科目: 來源: 題型:

為了解某市市民對政府出臺樓市限購令的態(tài)度,在該市隨機抽取了50名市民進(jìn)行調(diào)查,他們月收入(單位:百元)的頻數(shù)分布及對樓市限購令的贊成人數(shù)如下表:
月收入[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)488521
將月收入不低于55的人群稱為“高收入族”,月收入低于55的人群稱為“非高收人族”.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表,有多大的把握認(rèn)為贊不贊成樓市限購令與收入高低有關(guān)?
已知:Χ2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

當(dāng)Χ2<2.706時,沒有充分的證據(jù)判定贊不贊成樓市限購令與收入高低有關(guān);
當(dāng)Χ2>2.706時,有90%的把握判定贊不贊成樓市限購令與收入高低有關(guān);
當(dāng)Χ2>3.841時,有95%的把握判定贊不贊成樓市限購令與收入高低有關(guān);
當(dāng)Χ2>6.635時,有99%的把握判定贊不贊成樓市限購令與收入高低有關(guān).
非高收入族高收入族總計
贊成
不贊成
總計
(Ⅱ)現(xiàn)從月收入在[55,65)的人群中隨機抽取兩人,求所抽取的兩人中至少一人贊成樓市限購令的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex-ax.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時,若?x∈R,f(x)≥1,求實數(shù)a的取值集合.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=
px2+2
q+x
是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),f(2)=5.
(1)求p、q的值;
(2)求f(x)的值域;
(3)若方程f(x)=a在區(qū)間[
1
2
,3]上恒有兩個不同的實根,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1(a>0),F(xiàn)(x)=
f(x) , x≥0
-f(x) , x<0
若f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=x+t,若函數(shù)F(x)與g(x)的圖象有三個不同交點,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知△ABC中的內(nèi)角A、B、C所對的邊分別為a、b、c,若
m
=(cosB,cosC),
n
=(2a+c,b),且
m
n

(Ⅰ)求角B的大小;
(Ⅱ)求函數(shù)y=sin2A+sin2C的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知|
a
|=2,|
b
|=3,
a
b
的夾角為θ,且tanθ=
3

(1)求
a
b
的值;        
(2)求|
a
-
b
|的值.

查看答案和解析>>

科目: 來源: 題型:

我市某校某數(shù)學(xué)老師這學(xué)期分別用m,n兩種不同的教學(xué)方式試驗高一甲、乙兩個班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同,勤奮程度和自覺性都一樣).現(xiàn)隨機抽取甲、乙兩班各20名的數(shù)學(xué)期末考試成績,分別為:
甲班:82,73,69,59,67,72,86,58,68,71,67,59,86,66,78,92,58,83,72,81.
乙班:89,69,95,80,73,86,69,90,81,78,98,86,65,82,76,96,88,67,91,85.
(Ⅰ)作出甲乙兩班分別抽取的20名學(xué)生數(shù)學(xué)期末成績的莖葉圖,依莖葉圖判斷哪個班的平均分高?
(Ⅱ)現(xiàn)從甲班所抽數(shù)學(xué)成績不低于80分的同學(xué)中隨機抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個被抽中的概率.

查看答案和解析>>

同步練習(xí)冊答案