相關(guān)習題
 0  209949  209957  209963  209967  209973  209975  209979  209985  209987  209993  209999  210003  210005  210009  210015  210017  210023  210027  210029  210033  210035  210039  210041  210043  210044  210045  210047  210048  210049  210051  210053  210057  210059  210063  210065  210069  210075  210077  210083  210087  210089  210093  210099  210105  210107  210113  210117  210119  210125  210129  210135  210143  266669 

科目: 來源: 題型:

已知:α∈(0,
π
2
),sinα=
3
5
求值:
(Ⅰ)tanα;
(Ⅱ)cos2α+sin(α+
π
2

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ax2+bx-1,a∈(0,4),b∈R.
(1)若b<0,且當x∈[-
1
a
,0]時,f(x)∈[-
3
a
,0],求a,b的值;
(2)是否存在實數(shù)a,b,使f(x)恰有一個零點x0∈(1,2),若存在,請給出一對實數(shù)a,b;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

用數(shù)軸標根法解關(guān)于x的不等式:(1-2x)(x-1)(x+2)<0.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知連接橢圓
x2
a2
+y2=1(a>1)的四個頂點得到的菱形的面積為2
2
,設A(0,1),B(0,-1),過橢圓的右頂點C的直線l與橢圓交于點D(點D不同于點C),交y軸于點P(點P不同于坐標原點O),直線AD與BC交于點Q.
(1)求a的值;
(2)判斷
OP
OQ
是否為定值,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

已知cosα=
13
14
,cos(α-β)=-
1
7
,0<α<
π
2
<β<π.
求:(1)tan2α;(2)β

查看答案和解析>>

科目: 來源: 題型:

先閱讀下面的文字,再按要求解答.
如圖,在一個田字形地塊的A、B、C、D四個區(qū)域中栽種觀賞植物,要求同一區(qū)域種同一種植物,相鄰兩區(qū)域(A與D,B與C不相鄰)種不同的植物,現(xiàn)有四種不同的植物可供選擇,問不同的種植方案有多少種?
某學生給出如下的解答:
解:完成四個區(qū)域種植植物這件事,可分4步:
第一步:在區(qū)域A種植物,有C
 
1
4
種方法;
第二步:在區(qū)域B種植與區(qū)域A不同的植物,有C
 
1
3
種方法;
第三步:在區(qū)域D種植與區(qū)域B不同的植物,有C
 
1
3
種方法;
第四步:在區(qū)域C種植與區(qū)域A、D均不同的植物,有C
 
1
2
種方法.
根據(jù)分步計數(shù)原理,共有C
 
1
4
C
 
1
3
C
 
1
3
C
 
1
2
=72(種).
答:共有72種不同的種植方案.
問題:
(1)請你判斷上述的解答是否正確,并說明理由;
(2)請寫出你解答本題的過程.

查看答案和解析>>

科目: 來源: 題型:

若函數(shù)f(x)的定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.例如:f(x)=x2+x-1在R上存在x=1,滿足f(-1)=-f(1),故稱f(x)=x2+x-1為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+2bx-4a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”,并說明理由;
(2)設f(x)=2x+m是定義在[-1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

某研究機構(gòu)對高二文科學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù)
X 6 8 10 12
Y 2 3 5 6
(1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
y
=
b
x+
a
;
(3)試根據(jù)(2)求出的線性回歸方程,預測記憶力為14的同學的判斷力.

查看答案和解析>>

科目: 來源: 題型:

求由兩條曲線y=-x2,4y=-x2及直線y=-1所圍成圖形的面積,并畫出簡圖.

查看答案和解析>>

科目: 來源: 題型:

解方程:2|x-1|=8.

查看答案和解析>>

同步練習冊答案