相關(guān)習(xí)題
 0  210603  210611  210617  210621  210627  210629  210633  210639  210641  210647  210653  210657  210659  210663  210669  210671  210677  210681  210683  210687  210689  210693  210695  210697  210698  210699  210701  210702  210703  210705  210707  210711  210713  210717  210719  210723  210729  210731  210737  210741  210743  210747  210753  210759  210761  210767  210771  210773  210779  210783  210789  210797  266669 

科目: 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,且
3
(a-ccosB)=bsinC
(1)求角C;
(2)若△ABC的面積S=
3
3
,a+b=4,求sinAsinB及cosAcosB的值.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的通項(xiàng)an=n2+n,試問是否存在常數(shù)p,q,使等式
1
1+a1
+
1
2+a2
+…
1
n+an
=
pn2+qn
4(n+1)(n+2)
對一切自然數(shù)n都成立.若存在,求出p,q的值.并用數(shù)學(xué)歸納法證明,若不存在說明理由.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
x2
(1)討論f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[
1
e
,e]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2sin(
x
2
+
π
6
)cos
x
2
+
1
2
,x∈R,
(1)求f(x)的最小正周期、對稱中心及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[o,π]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=5,S15=225.
(1)求{an}的通項(xiàng)an;
(2)數(shù)列{bn}為等比數(shù)列,b3=a2+a3,b2b5=128,求{bn}的前8項(xiàng)和T8

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點(diǎn)E在棱PA上,且PE=2EA.
(1)求BC的長;
(2)求異面直線PA與CD所成的角;
(3)求二面角A-BE-D的余弦值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)全集是實(shí)數(shù)集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)當(dāng)a=-4時(shí),求A∩B和A∪B;
(2)若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

受市場的影響,三峽某旅游公司的經(jīng)濟(jì)效益出現(xiàn)了一定程度的滑坡,現(xiàn)需要對某一景點(diǎn)進(jìn)行改造升級,從而擴(kuò)大內(nèi)需,提高旅游增加值.經(jīng)過市場調(diào)查,旅游增加值y萬元與投入x萬元之間滿足:y=
51
50
x-ax2-ln
x
10
,且
x
2x-12
∈[11,+∞),當(dāng)x=10時(shí),y=9.2.
(1)求y=f(x)的解析式和投入x的取值范圍;
(2)求出旅游增加值y取得最大值時(shí)對應(yīng)的x值.

查看答案和解析>>

科目: 來源: 題型:

網(wǎng)上購物系統(tǒng)是一種具有交互功能的商業(yè)信息系統(tǒng),它在網(wǎng)絡(luò)上建立一個(gè)虛擬的購物商場,使購物過程變得輕松、快捷、方便.網(wǎng)上購物系統(tǒng)分為前臺管理和后臺管理,前臺管理包括瀏覽商品、查詢商品、訂購商品、
用戶信息維護(hù)等功能.后臺管理包括公告管理、商品管理、訂單管理、投訴管理和用戶管理等模塊.
(1)根據(jù)這些要求畫出該組織結(jié)構(gòu)圖.
(2)查詢商品的上位要素是什么?它與上位是什么關(guān)系?

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,
m
=(b,2a-c),
n
=(cosB,cosC),且
m
n

(1)求角B的大;
(2)設(shè)f(x)=cos(ωx-
B
2
)+sinωx(ω>0),且f(x)的最小正周期為π,求f(x)在[0,
π
2
]上的最大值和最小值,及相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊答案