相關(guān)習題
 0  210974  210982  210988  210992  210998  211000  211004  211010  211012  211018  211024  211028  211030  211034  211040  211042  211048  211052  211054  211058  211060  211064  211066  211068  211069  211070  211072  211073  211074  211076  211078  211082  211084  211088  211090  211094  211100  211102  211108  211112  211114  211118  211124  211130  211132  211138  211142  211144  211150  211154  211160  211168  266669 

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=
2an
an+2
,
(1)求a2,a3,a4
(2)猜想{an}的通項公式,并證明.

查看答案和解析>>

科目: 來源: 題型:

給出一個正五棱柱.
(Ⅰ)用3種顏色給其10個頂點染色,要求各側(cè)棱的兩個端點不同色,有幾種染色方案?
(Ⅱ)以其10個頂點為頂點的四面體共有幾個?

查看答案和解析>>

科目: 來源: 題型:

已知動圓過點M(-
3
,0),且與圓N:(x-
3
2+y2=16相內(nèi)切.
(Ⅰ)求動圓的圓心P的軌跡方程;
(Ⅱ)已知點A(2,0),點B(1,0),過點B且斜率為k1(k1≠0)的直線l與(Ⅰ)中的軌跡相交于C、D兩點,直線AC、AD分別交直線x=3于E、F兩點,線段EF的中點為Q.記直線QB的斜率為k2,求證:k1•k2為定值.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標系xOy中,已知動點P(x,y)(y≤0)到點F(0,-2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(Ⅰ)求點P的軌跡E的方程;
(Ⅱ)若直線l斜率為1且過點(1,0),其與軌跡E交于點M、N,求|MN|的值.

查看答案和解析>>

科目: 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)=-x2+2x
(Ⅰ)求函數(shù)f(x)在R上的解析式;
(Ⅱ)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

甲、乙兩位學生參加數(shù)學競賽培訓,如圖所示莖葉圖的數(shù)據(jù)是他們在培訓期間五次預(yù)賽的成績.已知甲、乙兩位學生的平均分相同.
(注:方差s2=
1
n
[(x1
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2])
(Ⅰ)求x以及甲、乙成績的方差;
(Ⅱ)現(xiàn)由于只有一個參賽名額,請你用統(tǒng)計或概率的知識,分別指出派甲參賽、派乙參賽都可以的理由.

查看答案和解析>>

科目: 來源: 題型:

設(shè)無窮等比數(shù)列{an}的公比為q,且an>0(n∈N*),[an]表示不超過實數(shù)an的最大整數(shù)(如[2.5]=2),記bn=[an],數(shù)列{an}的前n項和為Sn,數(shù)列{bn}的前n項和為Tn
(Ⅰ)若a1=14,q=
1
2
,求T3;
(Ⅱ)證明:Sn=Tn(n=1,2,3,…)的充分必要條件為an∈N*
(Ⅲ)若對于任意不超過2014的正整數(shù)n,都有Tn=2n+1,證明:(
2
3
 
1
2012
<q<1.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,滿足
(2a-b)cosC
c
=cosB,且sinA•sinB=
3
4
.求證:△ABC為正三角形.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}滿足a1=1,
an-an+1
an+1
=n,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2n
an
,數(shù)列{bn}的前n項和為Tn,求Tn
(3)證明:a12+a22+a32+…+an2<2.

查看答案和解析>>

科目: 來源: 題型:

已知O為原點,A(x1,y1),B(x2,y2)是橢圓C:
x2
m
+
y2
4
=1(0<m<4)上任意兩點,向量
p
=(x1,
y1
2
),
q
=(x2,
y2
2
)且
p
q
,橢圓的離心率e=
3
2
,求△AOB的面積是否為定值?

查看答案和解析>>

同步練習冊答案