相關(guān)習(xí)題
 0  212620  212628  212634  212638  212644  212646  212650  212656  212658  212664  212670  212674  212676  212680  212686  212688  212694  212698  212700  212704  212706  212710  212712  212714  212715  212716  212718  212719  212720  212722  212724  212728  212730  212734  212736  212740  212746  212748  212754  212758  212760  212764  212770  212776  212778  212784  212788  212790  212796  212800  212806  212814  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=cos2ωx-sin2ωx+2
3
cosωxsinωx(ω>0),f(x)的兩條相鄰對稱軸間的距離大于等于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,角A,B,C所對的邊依次為a,b,c,a=
3
,b+c=3,f(A)=1,當(dāng)ω=1時,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-x+
k
2
x2,(k>0,且k≠1).
(Ⅰ)當(dāng)k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的單調(diào)減區(qū)間;
(Ⅲ)當(dāng)k=0時,設(shè)f(x)在區(qū)間[0,n](n∈N*)上的最小值為bn,令an=ln(1+n)-bn,
求證:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4..a2n
2an+1
-1,(n∈N*).

查看答案和解析>>

科目: 來源: 題型:

某度假區(qū)以2014年索契冬奧會為契機,依山修建了高山滑雪場.為了適應(yīng)不同人群的需要,從山上A處到山腳滑雪服務(wù)區(qū)P處修建了滑雪賽道A-C-P和滑雪練習(xí)道A-E-P(如圖).已知cos∠ACP=一
5
5
,cos∠APC=
4
5
,cos∠APE=
2
3
,公路AP長為10(單位:百米),滑道EP長為6(單位:百米).
(Ⅰ)求滑道CP的長度;
(Ⅱ)由于C,E處是事故的高發(fā)區(qū),為及時處理事故,度假區(qū)計劃在公路AP上找一處D,修建連接道
DC,DE,問DP多長時,才能使連接道DC+DE最短,最短為多少百米?

查看答案和解析>>

科目: 來源: 題型:

某停車場臨時停車按時段收費,收費標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時按1小時計算).現(xiàn)有甲、乙兩人在該場地停車,兩人停車都不超過4小時.
(1)若甲停車1小時以上且不超過2小時的概率為
1
3
,停車付費多于14元的概率為
5
12
,求甲停車付費6元的概率;
(2)若甲、乙兩人每人停車的時長在每個時段的可能性相同,求甲乙二人停車付費之和為28元的概率.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=lnx,g(x)=af(x)+f′(x),
(1)求g(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時,
    ①比較g(x)與g(
1
x
)
的大;
    ②是否存在x0>0,使得|g(x)-g(x0)|<
1
x
對任意x>0成立?若存在,求出x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為
1
3

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓上任取一點P,過P點做y軸垂線段PQ,Q為垂足,當(dāng)P在橢圓上運動時,求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

已知線段AB的端點B的坐標(biāo)是(1,2),端點A在圓(x+1)2+y2=4上運動,點M是AB的中點.
(1)若點M的軌跡為曲線C,求此曲線的方程;
(2)設(shè)直線l:x+y+3=0,求曲線C上的點到直線l距離的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點M(4,0)到雙曲線上的點P的最小距離等于1,求雙曲線的方程.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
2
2
,且橢圓過點(1,1),過原點的直線l與橢圓C交于A、B兩點,橢圓上一點M滿足MA=MB.
(1)求橢圓C的方程;
(2)求
1
OA2
+
1
OB2
+
2
OM2
的值;
(3)是否存在定圓,使得直線l繞原點轉(zhuǎn)動時,AM恒與該定圓相切,若存在,求出圓的方程,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

長為3的線段AB的兩個端點A和B分別在x軸和y軸上滑動,如果點M是線段AB上一點,且
MB
=2
AM

(1)求點M的軌跡C的方程;
(2)設(shè)軌跡C與x軸的正半軸交于點N,且與直線l:y=kx+m(k≠0)相交于不同的兩點P、Q(不同于點N),若NP⊥NQ,試判斷直線l是否過定點?若是,求出該點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案