科目: 來源: 題型:
已知,函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)有兩個極值點(diǎn)(設(shè)為和)時,求證:.
(2)當(dāng)有兩個極值點(diǎn)(設(shè)為和)時,求證:.
查看答案和解析>>
科目: 來源: 題型:
已知橢圓:的左焦點(diǎn)為,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)P(-2,0)的直線與橢圓E交于A、B兩點(diǎn),且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點(diǎn),證明:
查看答案和解析>>
科目: 來源: 題型:
如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).
(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(3)設(shè)第(2)問中的與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
已知動點(diǎn)P到點(diǎn)A(-2,0)與點(diǎn)B(2,0)的斜率之積為-,點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)若點(diǎn)Q為曲線C上的一點(diǎn),直線AQ,BQ與直線x=4分別交于M,N兩點(diǎn),直線BM與橢圓的交點(diǎn)為D.求證,A,D,N三點(diǎn)共線.
查看答案和解析>>
科目: 來源: 題型:
已知點(diǎn)、為雙曲線:的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且.圓的方程是.
(1)求雙曲線的方程;
(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;
(3)過圓上任意一點(diǎn)作圓的切線交雙曲線于、兩點(diǎn),中點(diǎn)為,求證:.
查看答案和解析>>
科目: 來源: 題型:
已知點(diǎn)分別是橢圓的左、右焦點(diǎn), 點(diǎn)在橢圓上上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),點(diǎn)到的距離之積恒為1?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
如圖①,已知ABC是邊長為l的等邊三角形,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將ABF沿AF折起,得到如圖②所示的三棱錐A-BCF,其中BC=.
(1)證明:DE//平面BCF;
(2)證明:CF平面ABF;
(3)當(dāng)AD=時,求三棱錐F-DEG的體積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com