科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:填空題
設(shè)向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,則m= .
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:填空題
的展開式中,x3的系數(shù)是 .(用數(shù)字填寫答案)
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:填空題
設(shè)等比數(shù)列滿足a1+a3=10,a2+a4=5,則a1a2an的最大值為 .
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:填空題
某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為 元.
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:解答題
的內(nèi)角A,B,C的對邊分別為a,b,c,已知
(Ⅰ)求C;
(Ⅱ)若的面積為,求的周長.
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:解答題
如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,,且二面角DAFE與二面角CBEF都是.
(Ⅰ)證明:平面ABEF平面EFDC;
(Ⅱ)求二面角EBCA的余弦值.
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:解答題
某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進(jìn)機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).
(Ⅰ)求的分布列;
(Ⅱ)若要求,確定的最小值;
(Ⅲ)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:解答題
設(shè)圓的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(Ⅰ)證明為定值,并寫出點E的軌跡方程;
(Ⅱ)設(shè)點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:解答題
已知函數(shù)有兩個零點.
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)x1,x2是的兩個零點,證明:.
查看答案和解析>>
科目: 來源:2016年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(新課標(biāo)1卷精編版) 題型:解答題
選修41:幾何證明選講
如圖,OAB是等腰三角形,∠AOB=120°.以O(shè)為圓心, OA為半徑作圓.
(Ⅰ)證明:直線AB與⊙O相切;
(Ⅱ)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com