相關(guān)習(xí)題
 0  235439  235447  235453  235457  235463  235465  235469  235475  235477  235483  235489  235493  235495  235499  235505  235507  235513  235517  235519  235523  235525  235529  235531  235533  235534  235535  235537  235538  235539  235541  235543  235547  235549  235553  235555  235559  235565  235567  235573  235577  235579  235583  235589  235595  235597  235603  235607  235609  235615  235619  235625  235633  266669 

科目: 來源: 題型:選擇題

9.《莊子•天下篇》中記述了一個著名命題:“一尺之錘,日取其半,萬世不竭”.反映這個命題本質(zhì)的式子是( 。
A.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$B.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1
C.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1D.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$>1

查看答案和解析>>

科目: 來源: 題型:填空題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的焦點(diǎn)到相應(yīng)準(zhǔn)線的距離等于實(shí)軸長,則雙曲線的離心率為1+$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)對x∈[0,15]恒成立,求實(shí)數(shù)a的取值范圍;
(3)存在x∈(-∞,0],使|af(x)-f(2x)|>1成立,試求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時針轉(zhuǎn)動5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(圖象P0點(diǎn))開始計算時間,且點(diǎn)P距離水面的高度f(t)(米)與時間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)求函數(shù)f(t)的解析式;
(2)點(diǎn)P第二次到達(dá)最高點(diǎn)要多長時間?

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知兩個函數(shù)f(x)=log4(a$•{2}^{x}-\frac{4}{3}a$)(a≠0),g(x)=log4(4x+1)-$\frac{1}{2}x$的圖象有且只有一個公共點(diǎn),則實(shí)數(shù)a的取值范圍是{a|a>1或a=-3}..

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖1,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC=2BC=4,O是邊AB的中點(diǎn),將三角形AOD饒邊OD所在直線旋轉(zhuǎn)到A,OD位置,使得∠A,OB=120°,如圖2,設(shè)m為平面A1DC與平面A1OB的交線.

(1)判斷直線DC與直線m的位置關(guān)系并證明;
(2)若在直線m上的點(diǎn)G滿足OG⊥A1D,求出A1G的長;
(3)求直線A1O與平面A1BD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

3.若一個幾何體由正方體挖去一部分得到,其三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.拋物線y2=2x的焦點(diǎn)到準(zhǔn)線的距離為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知點(diǎn)A、B分別是左焦點(diǎn)為(-4,0)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn),且橢圓C過點(diǎn)P($\frac{3}{2}$,$\frac{5\sqrt{3}}{2}$).
(1)求橢圓C的方程;
(2)已知F是橢圓C的右焦點(diǎn),以AF為直徑的圓記為圓M,過P點(diǎn)能否引圓M的切線?若能,求出這條切線與x軸及圓M的弦PF所對的劣弧圍成的圖形面積;若不能,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若曲線y=a(x-1)-lnx在x=2處的切線垂直于直線y=-2x+2,則a=( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案