相關習題
 0  235838  235846  235852  235856  235862  235864  235868  235874  235876  235882  235888  235892  235894  235898  235904  235906  235912  235916  235918  235922  235924  235928  235930  235932  235933  235934  235936  235937  235938  235940  235942  235946  235948  235952  235954  235958  235964  235966  235972  235976  235978  235982  235988  235994  235996  236002  236006  236008  236014  236018  236024  236032  266669 

科目: 來源: 題型:解答題

19.某車間將10名技工平均分為甲,乙兩組加工某種零件,在單位時間內每個技工加工零件若干,其中合格零件的個數(shù)如表:
1號2號3號4號5號
甲組457910
乙組56789
(1)分別求出甲,乙兩組技工在單位時間內完成合格零件的平均數(shù)及方差,并由此判斷哪組工人的技術水平更好;
(2)質監(jiān)部門從該車間甲,乙兩組中各隨機抽取1名技工,對其加工的零件進行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間“質量合格”,否則“不合格”.求該車間“質量不合格”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

18.為了了解某校學生喜歡吃辣是否與性別有關,隨機對此校100人進行調查,得到如下的列表:已知在全部100人中隨機抽取1人抽到喜歡吃辣的學生的概率為$\frac{3}{5}$.
喜歡吃辣不喜歡吃辣合計
男生401050
女生203050
合計6040100
(1)請將上面的列表補充完整;
(2)是否有99.9%以上的把握認為喜歡吃辣與性別有關?說明理由:
下面的臨界值表供參考:
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n•{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知拋物線C:y2=2px(p>0)的焦點坐標為(1,0).
(1)求拋物線的標準方程;
(2)若直線l:y=x-1與拋物線C交于A,B兩點,求弦長|AB|.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知復數(shù)Z1=2+ai(其中a∈R且a>0,i為虛數(shù)單位),且$Z_1^2$為純虛數(shù).
(1)求實數(shù)a的值;            
(2)若$Z=\frac{Z_1}{1-i}$,求復數(shù)Z的模|Z|.

查看答案和解析>>

科目: 來源: 題型:填空題

15.給出一個算法:

根據(jù)以上算法,可求得f(-1)+f(3)的值為4.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知x、y的取值如表所示:
x0134
y2.24.34.86.7
若y與x線性相關,且y=2x+a,則a=0.5.

查看答案和解析>>

科目: 來源: 題型:填空題

13.若復數(shù)z滿足(1+i)•z=2i(i為虛數(shù)單位),則復數(shù)z=1+i.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知拋物線y2=4x的焦點為F,A、B,為拋物線上兩點,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O為坐標原點,則△AOB的面積為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知直線l過點P(3,-2)且與橢圓$C:\frac{x^2}{20}+\frac{y^2}{16}=1$相交于A,B兩點,則使得點P為弦AB中點的直線斜率為(  )
A.$-\frac{3}{5}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.一個袋中裝有大小相同的5個白球和3個紅球,現(xiàn)在不放回的取2次球,每次取出一個球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則P(B|A)是( 。
A.$\frac{5}{8}$B.$\frac{5}{16}$C.$\frac{4}{7}$D.$\frac{5}{14}$

查看答案和解析>>

同步練習冊答案