相關(guān)習題
 0  248189  248197  248203  248207  248213  248215  248219  248225  248227  248233  248239  248243  248245  248249  248255  248257  248263  248267  248269  248273  248275  248279  248281  248283  248284  248285  248287  248288  248289  248291  248293  248297  248299  248303  248305  248309  248315  248317  248323  248327  248329  248333  248339  248345  248347  248353  248357  248359  248365  248369  248375  248383  266669 

科目: 來源: 題型:選擇題

9.如圖是一個三棱錐的三視圖,其俯視圖是正三角形,主視圖與左視圖都是直角三角形.則這個三棱錐的外接球的表面積是(  )
A.19πB.28πC.67πD.76π

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知某工廠生產(chǎn)某高科技電子產(chǎn)品的月固定成本為20萬元,每生產(chǎn)1萬件需另外投入2.7萬元,設(shè)該工廠每一個月內(nèi)共生產(chǎn)該高科技電子產(chǎn)品x萬件并全部銷售完,每1萬件的銷售收入為R(x)萬元,且
R(x)=$\left\{\begin{array}{l}{10.8-\frac{1}{30}{x}^{2},0<x≤10}\\{\frac{108}{x}-\frac{1000}{3{x}^{2}},x>10}\end{array}\right.$
(Ⅰ)寫出月利潤W(單位:萬元)關(guān)于月產(chǎn)量x(單位:萬件)的函數(shù)解析式;
(Ⅱ)當月產(chǎn)量為多少萬件時,該工廠在這一高科技電子產(chǎn)品的生產(chǎn)中所獲月利潤最大?
(注:月利潤=月銷售收入-月總成本).

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標方程是ρ=$\frac{sinθ}{1-si{n}^{2}θ}$,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(1,2),直線l與曲線C交于A、B兩點.
(1)寫出直線l的極坐標方程與曲線C的普通方程;
(2)線段MA,MB長度分別記為|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知某校在一次考試中,5名學生的歷史和語文成績?nèi)缦卤恚?br />
學生的編號i12345
歷史成績x8075706560
語文成績y7066646862
(Ⅰ)若在本次考試中,規(guī)定歷史成績在70以上(包括70分)且語文成績在65分以上(包括65分)的為優(yōu)秀,計算這五名同學的優(yōu)秀率;
(Ⅱ)根據(jù)上表利用最小二乘法,求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=0.28;
(Ⅲ)利用(Ⅱ)中的線性回歸方程,試估計歷史90分的同學的語文成績.(四舍五入到整數(shù))

查看答案和解析>>

科目: 來源: 題型:選擇題

5.若函數(shù)f(x)=x-sinx對任意的θ∈(0,π),f(cos2θ)+f(2msinθ-5)≤0恒成立,則m的取值范圍是( 。
A.(-∞,2$\sqrt{2}$]B.(-∞,3]C.[2$\sqrt{2}$,+∞)D.[3,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=ax-(1+a)lnx-$\frac{1}{x}$,其中a為實數(shù).
(1)求函數(shù)f(x)的極大值點和極小值點;
(2)已知函數(shù)f(x)的圖象在x=2處的切線與x軸平行,g(x)=$\left\{\begin{array}{l}{1-bx(1≤x≤2)}\\{(1-b)x-1(2<x≤3)}\end{array}\right.$.且對任意x1∈(0,e],存在x2∈[1,3],使得f(x1)+g(x2)≤0,求實數(shù)b的最小值(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知數(shù)列{an}a1=t(t為常數(shù),t≠0且t≠1),a2=t2,當n∈N*,n≥2時,an+1=(t+1)an-tan-1
(1)求證{an-1-an}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若t=2若?n∈N*,A<$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$<B,試求實數(shù)A、B的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.某高中學校共有學生3000名,各年級的男、女生人數(shù)如下表:(其中高三學生具體男、女生人數(shù)未統(tǒng)計出,設(shè)為x、y名)
高一高二高三
男生588520x
女生612480y
(1)若用分層抽樣的方法在該校所有學生中抽取45名,則應(yīng)在高三年級抽取多少名學生?
(2)已知該校高三年級的男女生人數(shù)都不少于395名.并且規(guī)定如果“一個年級的男女生人數(shù)相差不超過6(即男女生人數(shù)之差的絕對值不大于6)”則稱該年級為“性別平衡年級”,求該校高三年級為“性別平衡年級”的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.下列各式:①{a}⊆{a}②??{0}③0⊆{0}④{1,3}?{3,4},其中正確的有( 。
A.B.①②C.①②③D.①③④

查看答案和解析>>

科目: 來源: 題型:填空題

11.函數(shù)y=2x-6+log2x的零點所在的區(qū)間為($\frac{k}{2}$,$\frac{k+1}{2}$),則k的值為4.

查看答案和解析>>

同步練習冊答案