相關(guān)習(xí)題
 0  251279  251287  251293  251297  251303  251305  251309  251315  251317  251323  251329  251333  251335  251339  251345  251347  251353  251357  251359  251363  251365  251369  251371  251373  251374  251375  251377  251378  251379  251381  251383  251387  251389  251393  251395  251399  251405  251407  251413  251417  251419  251423  251429  251435  251437  251443  251447  251449  251455  251459  251465  251473  266669 

科目: 來源: 題型:選擇題

10.下面幾種推理過程是演繹推理的是( 。
A.兩條直線平行,同旁內(nèi)角互補,如果∠A和∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
B.由平面三角形的性質(zhì),推測空間四面體的性質(zhì)
C.某校高三共有10個班,1班有51人,2班有53人,三班有52人,由此推測各班都超過50人
D.在數(shù)列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n≥2),計算a2、a3,a4,由此猜測通項an

查看答案和解析>>

科目: 來源: 題型:填空題

9.在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=$\sqrt{3}$acosB.
(1)求角B的大;
(2)若a=4,c=3,D為BC的中點,求AD的長度.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.函數(shù)$f(x)=\sqrt{{{log}_{\frac{1}{3}}}(4x-5)}$的定義域為( 。
A.$(\frac{5}{4},+∞)$B.$(-∞,\frac{5}{4})$C.$(\frac{5}{4},\frac{3}{2}]$D.$(\frac{5}{4},\frac{3}{2})$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.冪函數(shù)f(x)=k•xα的圖象過點$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,則k+α=( 。
A.$\frac{1}{3}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目: 來源: 題型:解答題

6.某園林局對1000株樹木的生長情況進行調(diào)查,其中槐樹600株,銀杏樹400株.現(xiàn)用分層抽樣方法從這1000株樹木中隨機抽取100株,其中銀杏樹樹干周長(單位:cm)的抽查結(jié)果繪成頻率分布直方圖如圖:(直方圖中每個區(qū)間僅包含左端點)
(1)求直方圖中的x值;
(2)若已知樹干周長在30cm至40cm之間的4株銀杏樹中有1株患有蟲害,現(xiàn)要對這4株樹逐一進行排查直至找出患蟲害的樹木為止.求排查的樹木恰好為2株的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=$\sqrt{2}$,b=1,f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{1}{3}$,求sinB的值.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知a、b是兩條異面直線,c∥a,那么c與b的位置關(guān)系不可能是平行.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.滿足BC=1.5,AC=1,B=30°的不同△ABC有多少個( 。
A.兩個B.一個C.零個D.無數(shù)個

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(x,-2),且$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則實數(shù)x的值等于( 。
A.-4B.4C.-6D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若實數(shù)x1,x2,y1,y2滿足${(2si{nx}_{1}{-y}_{1})}^{2}$+${{(x}_{2}{-y}_{2}+\sqrt{3})}^{2}$=0(0<x1<π),則${{(x}_{1}{-x}_{2})}^{2}{+{(y}_{1}{-y}_{2})}^{2}$的最小值是( 。
A.$\frac{{π}^{2}}{18}$B.$\frac{{π}^{2}}{9}$C.$\frac{\sqrt{2}}{6}π$D.$\frac{π}{9}$

查看答案和解析>>

同步練習(xí)冊答案