相關習題
 0  251687  251695  251701  251705  251711  251713  251717  251723  251725  251731  251737  251741  251743  251747  251753  251755  251761  251765  251767  251771  251773  251777  251779  251781  251782  251783  251785  251786  251787  251789  251791  251795  251797  251801  251803  251807  251813  251815  251821  251825  251827  251831  251837  251843  251845  251851  251855  251857  251863  251867  251873  251881  266669 

科目: 來源: 題型:解答題

4.已知圓F1:(x+1)2+y2=16及點F2(1,0),在圓F1任取一點M,連結(jié)MF2并延長交圓F1于點N,連結(jié)F1N,過F2作F2P∥MF1交NF1于P,如圖所示.
(1)求點P的軌跡方程;
(2)從F2點引一條直線l交軌跡P于A,B兩點,變化直線l,試探究$\frac{1}{{|{F_2}A|}}$+$\frac{1}{{|{F_2}B|}}$是否為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0)的離心率為$\frac{1}{2}$,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x-y+$\sqrt{6}$=0)且不垂直于x軸直線l橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$取值范圍;
(Ⅲ)若B關于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=4x3-3x2cosθ+$\frac{3}{16}$cosθ其中x∈R,θ為參數(shù),且0≤θ≤2π.
(1)當cosθ=0時,判斷函數(shù)f(x)是否有極值;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,左、右焦點分別為F1,F(xiàn)2過F1作不與x軸重合的直線l1,與橢圓C交于P,Q兩點,若△PQF2的周長為4$\sqrt{2}$.
(1)求橢圓C的標準方程
(2)過F1作與直線l1垂直的直線l2,且l2與橢圓C交于點M,N兩點,求四邊形PMQN面積的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.設a,b∈R,曲線f(x)=ax2+lnx+b(x>0)在點(1,f(1))處的切線方程為4x+4y+1=0.
(1)若函數(shù)g(x)=f(ax)-m有2個零點,求實數(shù)m的取值范圍;
(2)當p≤2時,證明:f(x)<x3-px2

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知角β的終邊在圖中陰影所表示的范圍內(nèi)(不包括邊界),那么β∈(K•180°+30°,K•180°+150°),k∈Z..

查看答案和解析>>

科目: 來源: 題型:選擇題

6.在直棱柱(側(cè)棱垂直于底面)ABC-A1B1C1中,點D為BC的中點,BC=4,AB=AC=$\sqrt{7}$,AA1=3,則三棱錐C1-AB1D的高為(  )
A.$\sqrt{3}$B.$\frac{6\sqrt{13}}{13}$C.$\frac{12\sqrt{13}}{13}$D.$\frac{\sqrt{39}}{13}$

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知角α的終邊與$\frac{π}{3}$角的終邊相同.那么$\frac{α}{3}$在[0,2π)內(nèi)的值為$\frac{π}{9}$,$\frac{7π}{9}$,$\frac{13π}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.計算:log49-log2$\frac{3}{32}$+2${\;}^{lo{g}_{2}3}$=8.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知f(x)是偶函數(shù),且x≥0時,f(x)=3x,則f(-2)=9.

查看答案和解析>>

同步練習冊答案