相關(guān)習(xí)題
 0  252372  252380  252386  252390  252396  252398  252402  252408  252410  252416  252422  252426  252428  252432  252438  252440  252446  252450  252452  252456  252458  252462  252464  252466  252467  252468  252470  252471  252472  252474  252476  252480  252482  252486  252488  252492  252498  252500  252506  252510  252512  252516  252522  252528  252530  252536  252540  252542  252548  252552  252558  252566  266669 

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)是R上的奇函數(shù),且x>0時(shí),f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如圖的直角坐標(biāo)系中畫出函數(shù)求f(x)的圖象,并求不等式f(x)<0的解集.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知集合A={x|x2+3x-4≥0}  B={x|$\frac{2x-1}{x+1}$<1}  
(1)求集合A、B;
(2)求A∪B,(CRB)∩A.

查看答案和解析>>

科目: 來源: 題型:填空題

10.若函數(shù)f(x)=(1-2a)x在R上是減函數(shù),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知有三個(gè)數(shù)a=($\frac{11}{3}$)-2,b=40.3,c=80.25,則它們之間的大小關(guān)系是( 。
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目: 來源: 題型:選擇題

8.下列各組中的函數(shù)相等的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=|x|,g(x)=$\sqrt{{t}^{2}}$
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x+1}-\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知O為坐標(biāo)原點(diǎn),A(0,2),B(4,6),$\overrightarrow{OM}=λ\overrightarrow{OA}+μ\overrightarrow{AB}$.
(1)若λ=2,且$\overrightarrow{OM}⊥\overrightarrow{AB}$,求μ的值;
(2)若對任意實(shí)數(shù)μ,恒有A,B,M三點(diǎn)共線,求λ的值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.在△ABC中,a,b,c分別為角A,B,C對應(yīng)的邊,若$a=\sqrt{3},b=\sqrt{2},∠B=\frac{π}{4}$,則∠C=$\frac{5π}{12}$或$\frac{π}{12}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在銳角△ABC中,|BC|=1,∠B=2∠A,則$\frac{{|{AC}|}}{cosA}$=2;|AC|的取值范圍為$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知$sin(x+\frac{π}{3})=\frac{1}{3},x∈(0,π)$,則$sin(\frac{π}{6}-x)$=-$\frac{2\sqrt{2}}{3}$;$cos(2x+\frac{π}{3})$=$\frac{7+4\sqrt{6}}{18}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.函數(shù)f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的解析式為f(x)=$\sqrt{2}$sin(2x+$\frac{π}{6}$);f(x)的圖象的橫坐標(biāo)縮小為原來的$\frac{1}{2}$后得函數(shù)y=g(x)的圖象,則g(x)的單調(diào)減區(qū)間為[$\frac{π}{12}$+$\frac{1}{2}$kπ,$\frac{π}{3}$+$\frac{1}{2}$kπ],k∈Z.

查看答案和解析>>

同步練習(xí)冊答案