相關(guān)習(xí)題
 0  252619  252627  252633  252637  252643  252645  252649  252655  252657  252663  252669  252673  252675  252679  252685  252687  252693  252697  252699  252703  252705  252709  252711  252713  252714  252715  252717  252718  252719  252721  252723  252727  252729  252733  252735  252739  252745  252747  252753  252757  252759  252763  252769  252775  252777  252783  252787  252789  252795  252799  252805  252813  266669 

科目: 來源: 題型:解答題

9.如圖所示,AB是⊙O的直徑,AC切⊙O于點A,AC=AB,CO交⊙O于點P,CO的延長線交⊙O于點F,BP的延長線交AC于點E.
(1)求證:$\frac{AP}{PC}$=$\frac{FA}{AB}$;
(2)若⊙O的直徑AB=1,求tan∠CPE的值.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,BC是圓O的直徑,點F在弧$\widehat{BC}$上,點A為弧$\widehat{BF}$的中點,做AD⊥BC于點D,BF與AD交于點E,BF與AC交于點G.
(Ⅰ)證明:AE=BE
(Ⅱ)若AC=9,GC=7,求圓O的半徑.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知橢圓C的方程為x2+$\frac{{y}^{2}}{4}$=1,定點N(0,1),過圓M:x2+y2=$\frac{4}{5}$上任意一點作圓M的一條切線交橢圓C于A,B兩點.
(1)求證:$\overrightarrow{OA}•\overrightarrow{OB}=0$;
(2)若點P,Q在橢圓C上,直線PQ與x軸平行,直線PN交橢圓于另一個不同的點S,問:直線QS是否經(jīng)過一個定點?若是,求出這個定點的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.高為1的四棱錐S-ABCD的底面是邊長為2的正方形,點S、A、B、C、D均在半徑為$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心與頂點S之間的距離為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.四棱柱ABCD-A1B1C1D1中,側(cè)棱AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)求證:B1C1⊥CE
(2)求點C到平面B1C1E的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知a為常數(shù),函數(shù)f(x)=xlnx-$\frac{1}{2}$ax2
(1)當(dāng)a=0時,求函數(shù)f(x)的最小值;
(2)若f(x)有兩個極值點x1,x2(x1<x2
①求實數(shù)a的取值范圍;
②求證:x1x2>1.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若一個四棱錐底面為正方形,頂點在底面的射影為正方形的中心,且該四棱錐的體積為9,當(dāng)其外接球表面積最小時,它的高為(  )
A.3B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知:如圖所示,一個圓錐的底面半徑為30,高為40,在其中有一個高為20的內(nèi)接圓柱.
(1)求圓柱的側(cè)面積;
(2)求圓柱與圓錐的體積之比.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.有一個三棱錐與一個四棱錐,棱長都相等,它們的一個側(cè)面重疊后,還有暴露面的個數(shù)為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≤6的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時,證明:3|a+b|≤|ab+9|.

查看答案和解析>>

同步練習(xí)冊答案