3.若一個(gè)四棱錐底面為正方形,頂點(diǎn)在底面的射影為正方形的中心,且該四棱錐的體積為9,當(dāng)其外接球表面積最小時(shí),它的高為( 。
A.3B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

分析 由四棱錐的體積為9可得到底面邊長a與高h(yuǎn)的關(guān)系,作出圖形,則球心O在棱錐的高或高的延長線上,分兩種情況根據(jù)勾股定理列出方程,解出球的半徑R的表達(dá)式,將問題轉(zhuǎn)化為求R何時(shí)取得最小值的問題.

解答 解:設(shè)底面邊長AB=a,棱錐的高SM=h,
∵V棱錐S-ABCD=$\frac{1}{3}$•a2•h=9,
∴a2=$\frac{27}{h}$,
∵正四棱錐內(nèi)接于球O,
∴O在直線SM上,設(shè)球O半徑為R,
(1)若O在線段SM上,如圖一,則OM=SM-SO=h-R,
(2)若O在在線段SM的延長線上,如圖二,則OM=SO-SM=R-h,
∵SM⊥平面ABCD,
∴△OMB是直角三角形,
∴OM2+MB2=OB2
∵OB=R,MB=$\frac{1}{2}$BD=$\frac{\sqrt{2}}{2}$a,
∴(h-R)2+$\frac{{a}^{2}}{2}$=R2,或(R-h)2+$\frac{{a}^{2}}{2}$=R2
∴2hR=h2+$\frac{{a}^{2}}{2}$,
即R=$\frac{h}{2}$+$\frac{{a}^{2}}{4h}$=$\frac{h}{2}$+$\frac{27}{4{h}^{2}}$=$\frac{h}{4}+\frac{h}{4}+\frac{27}{4{h}^{2}}$≥3$\root{3}{\frac{27}{64}}$=$\frac{9}{4}$.
當(dāng)且僅當(dāng)$\frac{h}{4}$=$\frac{27}{4{h}^{2}}$取等號(hào),
即h=3時(shí)R取得最小值$\frac{9}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查了正棱錐與其外接球的結(jié)構(gòu)特征,尋找球的半徑與棱錐底面邊長的關(guān)系是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖1,平行四邊形ABCD中,AB=2,BC=$\sqrt{2}$,∠BAD=45°,O為CD中點(diǎn),將△BOC沿OB邊翻折,折成直二面角A-BO-C,E為AC中點(diǎn),
(Ⅰ)求證:DE∥平面BOC;
(Ⅱ)求直線AC與平面BCD所成夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,圓O的直徑AB=8,圓周上過點(diǎn)C的切線與BA的延長線交于點(diǎn)E,過點(diǎn)B作AC的平行線交EC的延長線于點(diǎn)P.
(Ⅰ)求證:BE2=CE•PE
(Ⅱ)若EC=2$\sqrt{5}$,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),若AC,BD所成的角為60°,且BD=AC=1,求EF的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知x1、x2是函數(shù)f(x)=x2-mx+2lnx+4的兩個(gè)極值點(diǎn),a、b、c是函數(shù)f(x)的零點(diǎn),x1、a、x2成等比數(shù)列.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求證:a>bc(參考數(shù)據(jù):ln3=1.1);
(Ⅲ)關(guān)于x的不等式kx2-2(1-bc-k)lnx-k≥0恒成立,試用bc表示實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,BC是圓O的直徑,點(diǎn)F在弧$\widehat{BC}$上,點(diǎn)A為弧$\widehat{BF}$的中點(diǎn),做AD⊥BC于點(diǎn)D,BF與AD交于點(diǎn)E,BF與AC交于點(diǎn)G.
(Ⅰ)證明:AE=BE
(Ⅱ)若AC=9,GC=7,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓E:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0),離心率為$\frac{{\sqrt{2}}}{2}$,且過點(diǎn)A(-1,0).
(Ⅰ)求橢圓E的方程.
(Ⅱ)若橢圓E的任意兩條互相垂直的切線相交于點(diǎn)P,證明:點(diǎn)P在一個(gè)定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=kx+3與圓(x-1)2+(y+2)2=4相交于M,N兩點(diǎn),若$MN≥2\sqrt{3}$,則實(shí)數(shù)k的取值范圍是$({-∞,-\frac{12}{5}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.班上有四位同學(xué)申請A,B,C三所大學(xué)的自主招生,若每位同學(xué)只能申請其中一所大學(xué),且申請其中任何一所大學(xué)是等可能的.
(1)求恰有2人申請A大學(xué)或B大學(xué)的概率;
(2)求申請C大學(xué)的人數(shù)X的分布列與數(shù)學(xué)期望E(X).

查看答案和解析>>

同步練習(xí)冊答案