相關習題
 0  256490  256498  256504  256508  256514  256516  256520  256526  256528  256534  256540  256544  256546  256550  256556  256558  256564  256568  256570  256574  256576  256580  256582  256584  256585  256586  256588  256589  256590  256592  256594  256598  256600  256604  256606  256610  256616  256618  256624  256628  256630  256634  256640  256646  256648  256654  256658  256660  256666  256670  256676  256684  266669 

科目: 來源: 題型:

【題目】(1)求的展開式中的系數(shù)及展開式中各項系數(shù)之和;

(2)從0,2,3,4,5,6這6個數(shù)字中任取4個組成一個無重復數(shù)字的四位數(shù),求滿足條件的四位數(shù)的個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若 恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.

(1)求橢圓的標準方程;

(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓.

(1)若直線過定點,且與圓相切,求的方程;

(2)若圓的半徑為,圓心在直線上,且與圓外切,求圓的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年利潤(單位:萬元)的影響,對近5年的宣傳費和年利潤)進行了統(tǒng)計,列出了下表:

(單位:千元)

2

4

7

17

30

(單位:萬元)

1

2

3

4

5

員工小王和小李分別提供了不同的方案.

(1)小王準備用線性回歸模型擬合的關系,請你幫助建立關于的線性回歸方程;(系數(shù)精確到0.01)

(2)小李決定選擇對數(shù)回歸模型擬合的關系,得到了回歸方程并提供了相關指數(shù).請用相關指數(shù)說明選擇哪個模型更合適,并預測年宣傳費為4萬元的年利潤.(精確到0.01)(小王也提供了他的分析分析數(shù)據(jù)

參考公式:相關指數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為

,參考數(shù)據(jù),

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若是奇函數(shù),且在區(qū)間上是增函數(shù),求的值;

(Ⅱ)設,若在區(qū)間內(nèi)有兩個不同的零點, ,求的取值范圍,并求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓滿足:①圓心在第一象限,截軸所得弦長為2;②被軸分成兩段圓弧,其弧長的比為;③圓心到直線的距離為.

(Ⅰ)求圓的方程;

(Ⅱ)若點是直線上的動點,過點分別做圓的兩條切線,切點分別為, ,求證:直線過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】若數(shù)列滿足; , ),稱數(shù)列數(shù)列,記為其前項和.

(Ⅰ)寫出一個滿足,且數(shù)列;

(Ⅱ)若, ,證明:若數(shù)列是遞增數(shù)列,則;反之,若,則數(shù)列是遞增數(shù)列;

(Ⅲ)對任意給定的整數(shù)),是否存在首項為0的數(shù)列,使得?如果存在,寫出一個滿足條件的數(shù)列;如果不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直三棱柱中, 是線段上一點.

點.

(1)確定的位置,使得平面平面;

(2)若平面,設二面角的大小為,求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,小波從街區(qū)開始向右走在每個十字路口都會遇到紅綠燈,要是遇到綠燈則小波繼續(xù)往前走,遇到紅燈就往回走,假設任意兩個十字路口的綠燈亮或紅燈亮都是相互獨立的且綠燈亮的概率都是,紅燈亮的概率都是

(1)求小波遇到4次綠燈后,處于街區(qū)的概率;

(2)若小波一共遇到了3次紅綠燈,設此時小波所處的街區(qū)與街區(qū)相距的街道數(shù)為(如小波若處在街區(qū)則相距零個街道,處在街區(qū)都是相距2個街道),求的分布列和數(shù)學期望

查看答案和解析>>

同步練習冊答案