相關(guān)習(xí)題
 0  257538  257546  257552  257556  257562  257564  257568  257574  257576  257582  257588  257592  257594  257598  257604  257606  257612  257616  257618  257622  257624  257628  257630  257632  257633  257634  257636  257637  257638  257640  257642  257646  257648  257652  257654  257658  257664  257666  257672  257676  257678  257682  257688  257694  257696  257702  257706  257708  257714  257718  257724  257732  266669 

科目: 來(lái)源: 題型:

【題目】【2017遼寧莊河市四模如圖,四棱錐,底面是矩形,平面 平面,是邊長(zhǎng)為的等邊三角形, ,點(diǎn)的中點(diǎn).

(1)求證: 平面 ;

(2)點(diǎn) ,且滿足 ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=x3 , x∈R
B.y=sinx,x∈R
C.y=﹣x,x∈R
D.y=( x , x∈R

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】100輛汽車通過(guò)某一段公路時(shí),時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[50,70)的汽車大約有( 。

A.60輛
B.80輛
C.70輛
D.140輛

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某人從一魚(yú)池中捕得120條魚(yú),做了記號(hào)之后,再放回池中,經(jīng)過(guò)適當(dāng)?shù)臅r(shí)間后,再?gòu)某刂胁兜?00條魚(yú),結(jié)果發(fā)現(xiàn)有記號(hào)的魚(yú)為10條(假定魚(yú)池中不死魚(yú),也不增加),則魚(yú)池中大約有魚(yú)(  )
A.120條
B.1200條
C.130條
D.1000條

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】【2017寧夏石嘴山市二模】如圖,在以為頂點(diǎn)的多面體中,平面,平面,,.

(1)請(qǐng)?jiān)趫D中作出平面,使得,,并說(shuō)明理由;

(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|+x2+kx.
(1)若對(duì)于區(qū)間(0,+∞)內(nèi)的任意x,總有f(x)≥0成立,求實(shí)數(shù)k的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)有兩個(gè)不同的零點(diǎn)x1 , x2 , 求:
①實(shí)數(shù)k的取值范圍;
的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】下圖是容量為100的樣本的頻率分布直方圖,則樣本數(shù)據(jù)在[6,10)內(nèi)的頻率和頻數(shù)分別是( )

A.0.32,32   
B.0.08,8  
C.0.24,24   
D.0.36,36

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前項(xiàng)和為Sn , 且Sn= ,{bn}為等差數(shù)列,且a1=b1 , a2(b2﹣b1)=a1
(1)求數(shù)列{an}和{bn}通項(xiàng)公式;
(2)設(shè) ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,PA⊥底面ABCD,且PA=AB=AD=CD,AB∥CD,∠ADC=90°.
(1)在側(cè)棱PC上是否存在一點(diǎn)Q,使BQ∥平面PAD?證明你的結(jié)論;
(2)求證:平面PBC⊥平面PCD;

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】【2017黑龍江大慶實(shí)驗(yàn)中學(xué)仿真模擬如圖,在四棱錐P—ABCD中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q為PD的中點(diǎn).

(Ⅰ)證明:CQ∥平面PAB;

(Ⅱ)求直線PD與平面AQC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案