科目: 來源: 題型:
【題目】設(shè) = , =(4sinx,cosx﹣sinx),f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間 是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A= ,B={x||f(x)﹣m|<2},若AB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測指標(biāo)劃分為:指標(biāo)大于或者等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | |||||
元件甲 | 8 | 12 | 40 | 32 | 8 |
元件乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計元件甲、乙為正品的概率;
(2)生產(chǎn)一件元件甲,若是正品可盈利40元,若是次品則虧損5元,生產(chǎn)一件元件乙,若是正品可盈利50元,若是次品則虧損10元.在(1)的前提下:
(i)記為生產(chǎn)1件甲和1件乙所得的總利潤,求隨機變量的分布列和數(shù)學(xué)期望;
(ii)求生產(chǎn)5件元件乙所獲得的利潤不少于140元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2lnx.
(1)求證:f(x)在(1,+∞)上單調(diào)遞增.
(2)若f(x)≥2tx﹣ 在x∈(0,1]內(nèi)恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,,8)數(shù)據(jù)作了初步處理, 得到下面的散點圖及一些統(tǒng)計量的值.
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
其中wi= , =
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d 哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x、y的關(guān)系為z=0.2y﹣x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少?
(ii)年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1 , v1),(u2 , v2),,(un , vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計分別為: = , = ﹣ .
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).以原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,點的極坐標(biāo)方程為.
(1)求點的直角坐標(biāo),并求曲線的普通方程;
(2)設(shè)直線與曲線的兩個交點為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】觀察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根據(jù)上述規(guī)律,得到一般結(jié)論是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓與的中心在原點,焦點分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,與的四個焦點構(gòu)成的四邊形面積是.
(1)求橢圓與的方程;
(2)設(shè)是橢圓上非頂點的動點,與橢圓長軸兩個頂點,的連線,分別與橢圓交于,點.
(i)求證:直線,斜率之積為常數(shù);
(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) +cos2x+a(a∈R,a為常數(shù)). (Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅲ)若 時,f(x)的最小值為﹣2,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商區(qū)停車場臨時停車按時段收費,收費標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人在該商區(qū)臨時停車,兩人停車都不超過4小時. (Ⅰ)若甲停車1小時以上且不超過2小時的概率為 ,停車付費多于14元的概率為 ,求甲停車付費恰為6元的概率;
(Ⅱ)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(0)=1,則不等式f(x)<ex的解集為( )
A.(﹣∞,e4)
B.(e4 , +∞)
C.(﹣∞,0)
D.(0,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com