科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A、B、C是橢圓上不同的三點, ,C在第三象限,線段BC的中點在直線OA上。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點C的坐標(biāo);
(3)設(shè)動點P在橢圓上(異于點A、B、C)且直線PB, PC分別交直線OA于M、N兩點,證明為定值并求出該定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等比數(shù)列{an}是單調(diào)遞增的數(shù)列,a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=anlog2an , 數(shù)列{bn}的前n項和為Sn , 求Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知點的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點,求
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ln (x+1)- -x,a∈R.
(1)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:極坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為 (α為參數(shù)),若以直角坐標(biāo)系中的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為 (t為參數(shù)).
(1)求曲線M的普通方程和曲線N的直角坐標(biāo)方程;
(2)若曲線N與曲線M有公共點,求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“獲獎與學(xué)生的文理科有關(guān)”?
(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取名學(xué)生,記“獲獎”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
附表及公式:
,其中
查看答案和解析>>
科目: 來源: 題型:
【題目】宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了4次山高與相應(yīng)的氣溫,并制作了對照表,由表中數(shù)據(jù),得到線性回歸方程為y=﹣2x+a,由此估計山高為72(百米)處的氣溫為( )
氣溫x(℃) | 18 | 13 | 10 | ﹣1 |
山高y(百米) | 24 | 34 | 38 | 64 |
A.﹣10
B.﹣8
C.﹣6
D.﹣4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB= bcosC.
(1)求角C的大小;
(2)若c=3,sinA=2sinB,求△ABC的面積S△ABC .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC內(nèi)的一點.
(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;
(2)若∠BPC=,設(shè)∠PCB=θ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com