相關(guān)習(xí)題
 0  258103  258111  258117  258121  258127  258129  258133  258139  258141  258147  258153  258157  258159  258163  258169  258171  258177  258181  258183  258187  258189  258193  258195  258197  258198  258199  258201  258202  258203  258205  258207  258211  258213  258217  258219  258223  258229  258231  258237  258241  258243  258247  258253  258259  258261  258267  258271  258273  258279  258283  258289  258297  266669 

科目: 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m對一切實數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), ).

(1)若的圖象在點處的切線方程為,求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在等差數(shù)列中, ,其前項和為,等比數(shù)列的各項均為正數(shù), ,且, .

(1)求數(shù)列的通項公式;

(2)令,設(shè)數(shù)列的前項和為,求)的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;

(3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(﹣∞,0)∪(0,+∞),f(x)是奇函數(shù),且當x>0時,f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點恰有兩個,則實數(shù)a的取值范圍是(
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1

查看答案和解析>>

科目: 來源: 題型:

【題目】為了調(diào)查某高中學(xué)生每天的睡眠時間,現(xiàn)隨機對20名男生和20名女生進行問卷調(diào)查,結(jié)果如下:
女生:

睡眠時間(小時)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9]

人數(shù)

2

4

8

4

2

男生:

睡眠時間(小時)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9]

人數(shù)

1

5

6

5

3


(1)現(xiàn)把睡眠時間不足5小時的定義為“嚴重睡眠不足”,從睡眠時間不足6小時的女生中隨機抽取2人,求此2人中恰有一人為“嚴重睡眠不足”的概率;
(2)完成下面2×2列聯(lián)表,并回答是否有90%的把握認為“睡眠時間與性別有關(guān)”?

睡眠時間少于7小時

睡眠時間不少于7小時

合計

男生

女生

合計

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓C:x2+y2﹣2x﹣2ay+a2﹣24=0(a∈R)的圓心在直線2x﹣y=0上.
(1)求實數(shù)a的值;
(2)求圓C與直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)相交弦長的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓和直線 ,橢圓的離心率,坐標原點到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足:Sn= (an﹣1)(a為常數(shù),且a≠0,a≠1);
(1)求{an}的通項公式;
(2)設(shè)bn= +1,若數(shù)列{bn}為等比數(shù)列,求a的值;
(3)若數(shù)列{bn}是(2)中的等比數(shù)列,數(shù)列cn=(n﹣1)bn , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案