相關習題
 0  258208  258216  258222  258226  258232  258234  258238  258244  258246  258252  258258  258262  258264  258268  258274  258276  258282  258286  258288  258292  258294  258298  258300  258302  258303  258304  258306  258307  258308  258310  258312  258316  258318  258322  258324  258328  258334  258336  258342  258346  258348  258352  258358  258364  258366  258372  258376  258378  258384  258388  258394  258402  266669 

科目: 來源: 題型:

【題目】已知F1 , F2分別為雙曲線 =1(a>0,b>0)的左右焦點,如果雙曲線上存在一點P,使得F2關于直線PF1的對稱點恰在y軸上,則該雙曲線的離心率e的取值范圍為(
A.e>
B.1<e<
C.e>
D.1<e<

查看答案和解析>>

科目: 來源: 題型:

【題目】解答
(1)若關于x的不等式﹣ +2x>mx的解集為(0,2),求m的值.
(2)在△ABC中,sinA= ,cosB= ,求cosC的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某特色餐館開通了美團外賣服務,在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式, ;

②參考數(shù)據(jù): ,

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)=alnx+1(a>0).
(1)當x>0時,求證: ;
(2)在區(qū)間(1,e)上f(x)>x恒成立,求實數(shù)a的范圍.
(3)當 時,求證: (n∈N*).

查看答案和解析>>

科目: 來源: 題型:

【題目】某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積是(

A.90cm2
B.129cm2
C.132cm2
D.138cm2

查看答案和解析>>

科目: 來源: 題型:

【題目】已知M為△ABC的中線AD的中點,過點M的直線分別交兩邊AB、AC于點P、Q,設
=x , ,記y=f(x).

(1)求函數(shù)y=f(x)的表達式;
(2)設g(x)=x3+3a2x+2a,x∈[0,1].若對任意x1∈[ ,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動圓Q過定點F(0,﹣1),且與直線y=1相切;橢圓N的對稱軸為坐標軸,中心為坐標原點O,F(xiàn)是其一個焦點,又點(0,2)在橢圓N上.
(1)求動圓圓心Q的軌跡M的方程和橢圓N的方程;
(2)過點(0,﹣4)作直線l交軌跡M于A,B兩點,連結OA,OB,射線OA,OB交橢圓N于C,D兩點,求△OCD面積的最小值.
(3)附加題:過橢圓N上一動點P作圓x2+(y﹣1)2=1的兩條切線,切點分別為G,H,求 的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設曲線上一點的橫坐標為,過的直線交于一點,交軸于點,過點的垂線交于另一點,若的切線,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處有公共切線,求a,b的值;
(2)當a=3,b=﹣9時,函數(shù)f(x)+g(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.

查看答案和解析>>

同步練習冊答案