科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,點滿足方程.
(1)求點M的軌跡C的方程;
(2)作曲線C關于軸對稱的曲線,記為,在曲線C上任取一點,過點P作曲線C的切線l,若切線l與曲線交于A,B兩點,過點A,B分別作曲線的切線,,且,的交點為Q,試問以Q為直角的是否存在,若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿(mào)易自由化和經(jīng)濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經(jīng)貿(mào)交流合作,促進全球貿(mào)易和世界經(jīng)濟增長,推動開放世界經(jīng)濟發(fā)展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調(diào)查,并得到如下列聯(lián)表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據(jù)列聯(lián)表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】“團購”已經(jīng)滲透到我們每個人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)
(1)試計算2012年的快遞業(yè)務量;
(2)分別將2013年,2014年,…,2017年記成年的序號t:1,2,3,4,5;現(xiàn)已知y與t具有線性相關關系,試建立y關于t的回歸直線方程;
(3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務量
附:回歸直線的斜率和截距地最小二乘法估計公式分別為:,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:過點,左焦點
(1)求橢圓C的標準方程;
(2)過點F作于x軸不重合的直線l,l與橢圓交于A,B兩點,點A在直線上的投影N與點B的連線交x軸于D點,D點的橫坐標是否為定值?若是,請求出定值;若不是,請說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在長方體中,,點為上的一個動點,平面與棱交于點,給出下列命題:
①四棱錐的體積為;
②存在唯一的點,使截面四邊形的周長取得最小值;
③當點不與,重合時,在棱上均存在點,使得平面
④存在唯一一點,使得平面,且
其中正確的命題是_____________(填寫所有正確的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com