科目: 來源: 題型:
【題目】某地區(qū)實施“光盤行動”以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預(yù)交50元,啤酒根據(jù)需要自己用量杯量取.結(jié)賬時,剩余酒量不足1升的,按0升計算(如剩余1.7升,記為剩余1升).
統(tǒng)計表明飲酒量與人數(shù)有很強的線性相關(guān)關(guān)系,下面是隨機采集的5組數(shù)據(jù)(其中表示飲酒人數(shù),(升)表示飲酒量):,,,,.
(1)求由這5組數(shù)據(jù)得到的關(guān)于的回歸直線方程;
(2)小王約了5位朋友一同來飲酒,小王及朋友用量杯共量取了8升啤酒,這時,酒吧服務(wù)生對小王說,根據(jù)他的經(jīng)驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請一個或兩個朋友一起來飲酒,會更劃算.試問小王是否該接受服務(wù)生的建議.
參考數(shù)據(jù):回歸直線的方程是,其中
,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是邊長為2的正方形,,為的中點,點在上,平面,在的延長線上,且.
(1)證明:平面.
(2)過點作的平行線,與直線相交于點,當(dāng)點在線段上運動時,二面角能否等于?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:
某機構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
(1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷與是否線性相關(guān);
(2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);
(3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機選取50人,記選到女性車主的人數(shù)為,求的數(shù)學(xué)期望與方差.
參考公式:
,,其中.,若,則可判斷與線性相交.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義在上的偶函數(shù)滿足,且,當(dāng)時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為,投中“貫耳”的概率為,投中“散射”的概率為,投中“雙耳”的概率為,投中“依竿”的概率為,乙的投擲水平與甲相同,且甲乙投擲相互獨立.比賽第一場,兩人平局;第二場,甲投了個“貫耳”,乙投了個“雙耳”,則三場比賽結(jié)束時,甲獲勝的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.
(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;
(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.
①求;
②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達式,并由此求出數(shù)列的通項公式.
查看答案和解析>>
科目: 來源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點M是頂點P在底面ABCD的射影,N是PC的中點.
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為直角坐標(biāo)系的坐標(biāo)原點,雙曲線上有一點(m>0),點P在軸上的射影恰好是雙曲線C的右焦點,過點P作雙曲線C兩條漸近線的平行線,與兩條漸近線的交點分別為A,B,若平行四邊形PAOB的面積為1,則雙曲線的標(biāo)準(zhǔn)方程是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com