18.如圖所示,x軸上方有一勻強磁場,磁感應強度為B,磁場方向垂直于紙面向里.x軸下方有一勻強電場,電場強度為E、方向與y軸的夾角θ=45°斜向上方.現(xiàn)有一質量為m、帶電量為q的正離子,以速度v0由y軸上的A點沿y軸正方向射入磁場,該離子在磁場中運動一段時間后從x軸上的C點(圖中未畫出)進入電場區(qū)域,離子經(jīng)C點時的速度方向與電場方向相反.設磁場和電場區(qū)域均足夠大,不計離子的重力,求:

(1)離子從A點出發(fā)到第一次穿越x軸時的運動時間;
(2)C點到坐標原點O的距離;
(3)離子第四次穿越x軸時速度的大小及速度方向與電場方向的夾角.并大致畫出離子前四次穿越x軸在磁場和電場區(qū)域中的運動軌跡.

分析 (1、2)帶電粒子在勻強磁場中在洛侖茲力作用下做勻速圓周運動,由牛頓第二定律求出軌跡半徑.畫出粒子運動的軌跡,由幾何知識求出C點的坐標,根據(jù)運動軌跡的幾何關系,來確定圓心角,并結合周期公式求解運動時間;
(3)根據(jù)粒子做類平拋運動處理規(guī)律,由運動的分解,并結合運動學公式,即可求解.

解答 解:(1)磁場中帶電粒子在洛侖茲力作用下做圓周運動,如圖所示:
粒子做圓周運動的周期:T=$\frac{2πm}{Bq}$,
粒子在磁場中轉過的圓心角為$α=\frac{5}{4}π$,
設粒子從A到C的時間為t1,由幾何知識知可知:t1=$\frac{\frac{5}{4}π}{2π}T=\frac{5πm}{4Bq}$,
(2)由牛頓第二定律得:qv0B=m$\frac{{v}_{0}^{2}}{r}$,解得:r=$\frac{m{v}_{0}}{Bq}$,
由幾何知識知,C點到坐標原點O的距離xC=(r+rcos45°)=$\frac{(2+\sqrt{2})m{v}_{0}}{2qB}$,
(3)粒子第一次經(jīng)過x軸后做勻減速直線運動,速度減為零后又做勻加速直線運動,以和離開時相同的速率第二次進入磁場,然后做勻速圓周運動,離子從第三次過x軸到第四次過x軸的過程在電場中做類平拋運動,
設沿著v0的方向為x′軸,離子沿x′軸做勻速直線運動,運動軌跡如圖所示:
設沿著電場的方向為y′軸,離子沿y′軸做初速為零的勻變速直線運動x1=v0t①
${y}_{1}=\frac{1}{2}•\frac{Eq}{m}{t}^{2}$②
${v}_{y}′=\frac{Eq}{m}t$③
由圖中幾何關系知$\frac{{y}_{1}}{{x}_{1}}=tan45°$④
設離子第四次穿越x軸時速度的大小為v,速度方向與電場方向的夾角為β,$v=\sqrt{{{v}_{0}}^{2}+{v}_{y}{′}^{2}}$⑤,
$tanβ=\frac{{v}_{0}}{{v}_{y}′}$⑥
由①~⑥式得$v=\sqrt{5}{v}_{0}$,$β=arctan\frac{1}{2}$.
答:(1)離子從A點出發(fā)到第一次穿越x軸時的運動時間為$\frac{5πm}{4Bq}$;
(2)C點到坐標原點O的距離為$\frac{(2+\sqrt{2})m{v}_{0}}{2qB}$;
(3)離子第四次穿越x軸時速度的大小為$\sqrt{5}{v}_{0}$,速度方向與電場方向的夾角為$arctan\frac{1}{2}$.離子前四次穿越x軸在磁場和電場區(qū)域中的運動軌跡如圖所示.

點評 考查粒子做勻速圓周運動與類平拋運動,掌握牛頓第二定律與運動學公式,理解圓周運動的半徑公式與周期公式,掌握幾何關系在題中的應用.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:解答題

8.在用高級瀝青鋪設的高速公路上,汽車的最大速度為108km/h.汽車在這種路面上行駛時,它的輪胎與地面的最大靜摩擦力等于車重的0.6倍.(g取10m/s2
(1)如果汽車在這種高速路的水平彎道上拐彎,假設彎道的路面是水平的,其彎道的最小半徑是多少?
(2)如果高速公路上設計了圓弧拱橋作立交橋,要使汽車能夠安全通過圓弧拱橋,這個圓弧拱橋的半徑至少是多少?

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

9.一質量為1000kg的汽車,以額定功率由靜止啟動,它在水平面上運動時所受的阻力為車重的0.1倍,發(fā)動機額定功率為5kW.則汽車在此路面上行駛最大速度為(g取10m/s2)( 。
A.5m/sB.7m/sC.8m/sD.10m/s

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

6.如圖所示,在xoy面內,第一象限中有勻強電場,場強大小為E,方向 沿y軸正方向.在X軸的下方有勻強磁場,磁感應強度大小為B,方向垂直紙面向里.今有一個質量為m 電荷量為q的帶負電的粒子(不計粒子的重力和其他 阻力),從y軸上的P點以初速度V0垂直于電場方向 進人電場.經(jīng)電場偏轉后,沿著與X正方向成30°進入 磁場.試完成:
(1)求P點離坐標原點O的距離h;
(2)求粒子從P點出發(fā)到粒子第一次離開磁場時所用的時間?

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

13.如圖甲所示,在光滑絕緣水平桌面內建立xoy坐標系,在第Ⅱ象限內有平行于桌面的勻強電場,場強方向與x軸負方向的夾角θ=45°.在第Ⅲ象限垂直于桌面放置兩塊相互平行的平板C1、C2,兩板間距為d1=0.6m,板間有豎直向上的勻強磁場,兩板右端在y軸上,板C1與x軸重合,在其左端緊貼桌面有一小孔M,小孔M離坐標原點O的距離為l1=0.72m.在第Ⅳ象限垂直于x 軸放置一豎直平板C3,垂足為Q,Q、O相距d2=0.18m,板C3長l2=0.6m.現(xiàn)將一帶負電的小球從桌面上的P點以初速度v0=2$\sqrt{2}$m/s垂直于電場方向射出,剛好垂直于x軸穿過C1板上的M孔,進入磁場區(qū)域.已知小球可視為質點,小球的比荷$\frac{q}{m}$=20C/kg,P點與小孔M在垂直于電場方向上的距離為s=$\frac{\sqrt{2}}{10}$m,不考慮空氣阻力.

求:
(1)勻強電場的場強大;
(2)要使帶電小球無碰撞地穿出磁場并打到平板C3上,求磁感應強度B的取值范圍;
(3)以小球從M點進入磁場開始計時,磁場的磁感應強度隨時間呈周期性變化,規(guī)定豎直向上為磁感強度的正方向,如圖乙所示,則小球能否打在平板C3上?若能,求出所打位置到Q點距離;若不能,求出其軌跡與平板C3間的最短距離.($\sqrt{3}$=1.73,計算結果保留兩位小數(shù))

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

3.用半圓形玻璃磚做“測定玻璃的折射率”的實驗,實驗步驟如下:
a、如圖,在一張白紙上畫一直線ab作為玻璃磚的一個界面,標出點O;
b、過O點畫一線段OA,在OA上垂直地插兩枚大頭針P1、P2
c、在ab線上側放上玻璃磚,使O點正好處于圓心的位置;
d、在ab線下側通過玻璃磚觀察P1、P2的像;并插一枚大頭針P3,使P3擋住P1、P2的像;標出P3的位置;
e、移去玻璃磚和大頭針,連接OP3,作過O點與ab垂直的直線MN;
f、用量角器量出∠MOA和∠NOB兩角的大小,根據(jù)光路可逆性,當光線從空氣射向玻璃磚時,∠NOB為入射角,記為i,∠MOA為折射角,記為r;
根據(jù)以上步驟可求得玻璃折射率n=$\frac{sini}{sinγ}$若在進行步驟d時,無論怎么調整觀察位置,都不能從ab線下側觀察到P1、P2的像,發(fā)生這種情況的原因是角γ過大,在ab界面發(fā)生了全反射.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

10.如圖1所示,游標卡尺的示數(shù)為5.015cm;如圖2,螺旋測微器的示數(shù)為3.290mm.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

7.我國的登月計劃是未來將建立月球基地,并在繞月圓軌道上建造空間站.如圖所示,關閉動力的航天飛機在月球引力作用下向月球靠近時,將與空間站在B處對接,下列說法中正確的是( 。
A.圖中航天飛機正加速飛向B處
B.航天飛機在B處由橢圓軌道進入空間站圓軌道必須點火減速
C.航天飛機在B處由橢圓軌道進入空間站圓軌道時,航天飛機的加速度變小了
D.航天飛機在B處由橢圓軌道進入空間站圓軌道時,航天飛機的加速度變大了

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

8.如圖所示,在波的傳播方向上間距均為1m的五個質點α、b、c、d、e均靜止在各自的平衡位置.一列波以1m/s的速度水平向右傳播,已知t=0時,波到達質點a,質點a開始由平衡位置向下運動,t=3s時,質點a第一次到達最高點,則下列說法正確的是( 。
A.質點d開始振動后的振動頻率為4Hz
B.t=4s時,波恰好傳到質點e
C.t=5s時,質點b到達最高點
D.在4s<t<5s這段時間內,質點C的加速度方向向下

查看答案和解析>>

同步練習冊答案