2009年宿遷中考數(shù)學(xué)模擬試卷

滿分:150分   考試時(shí)間:120分鐘

 

一、選擇題(本題共8小題,下列各小題的四個(gè)選項(xiàng)中,只有一個(gè)符合題意.每小題3分,共24分)

1.在1、-1、-2這三個(gè)數(shù)中,任意兩個(gè)數(shù)之和的最大值是                           (   )

A.-3                          B.-1                        C.0                            D.2

試題詳情

2.下列幾何體,主視圖是三角形的是                                   (      )

 

 

 

     

      A.           B.            C.           D.

試題詳情

3.在一個(gè)暗箱里放有a個(gè)除顏色外其它完全相同的球,這a個(gè)球中紅球只有3個(gè).每次將球攪拌均勻后,任意摸出一個(gè)球記下顏色再放回暗箱.通過(guò)大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在25%,那么可以推算出a大約是                                                                        (     )

A.12                           B.9                            C.4                            D.3

試題詳情

4.不等式組的解集在數(shù)軸上表示正確的是                           (  。

A.                            B.                   C.                           D.

試題詳情

5.如圖,一次函數(shù)的圖象經(jīng)過(guò)A、B兩點(diǎn),則這個(gè)一次函數(shù)的解析式是      (      )

A.y=x-2                 B.y=x-2              C.y=x+2              D.y=x+2

試題詳情

6.如圖,在△ABC中AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,已知EH=EB=3、AE=4,則CH的長(zhǎng)是                                                           (   。

  A.4                               B.3                      C.2                   D.1

 

 

 

 

 

 

試題詳情

7.已知關(guān)于x的方程x2-px+q=0的兩個(gè)根分別是0和-2,則p和q的值分別是(    )

A.p=2,q=0      B.p=-2,q=0      C.p=,q=0       D.p=-,q=0 

試題詳情

8.如圖,在Rt△ABC內(nèi)有邊長(zhǎng)分別為a,b,c的三個(gè)正方形,則a,b,c滿足的關(guān)系式是                                                                                                      (      )

A.b=a+c         B.b=ac      C.b2=a2+c2   D.b=2a=2c

試題詳情

二、填空題(本題共10小題,每小題3分,共30分)

9.因式分解:x3-4x=        

試題詳情

10.下表是我省氣象臺(tái)對(duì)2008年11月6日最高溫度的預(yù)報(bào),當(dāng)天預(yù)報(bào)最高溫度數(shù)據(jù)的中位數(shù)是    

城市

南京

徐州

連云港

淮安

鹽城

宿遷

揚(yáng)州

泰州

鎮(zhèn)江

常州

無(wú)錫

蘇州

南通

最高

溫度

19

20

17

18

19

16

21

19

21

21

20

22

21

試題詳情

11.2008年春季學(xué)期以來(lái),我省城鄉(xiāng)義務(wù)教育階段學(xué)生全部得到了免費(fèi)提供的課本.今年全省義務(wù)教育階段720萬(wàn)名學(xué)生,免除學(xué)雜費(fèi)和課本費(fèi)后家長(zhǎng)共減負(fù)29億元.用科學(xué)記數(shù)法表示29億元的結(jié)果是          元.

試題詳情

12.函數(shù)的自變量x的取值范圍是          .

試題詳情

13.如圖,在□ABCD中,E為CD的中點(diǎn),連結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,

S□ABCD=18,則S△ABF    

 

 

 

 

 

 

 

試題詳情

14.如圖,點(diǎn)D在以AC為直徑的⊙O上,如果∠BDC=20°,那么∠ACB=       °.

試題詳情

15.在一個(gè)可以改變?nèi)莘e的密閉容器內(nèi),裝有一定質(zhì)量m的某種氣體, 當(dāng)改變?nèi)莘eV時(shí),氣體的密度也隨之改變.與V在一定范圍內(nèi)滿足,它的圖象如圖所示,則該氣體的質(zhì)量m          kg.

試題詳情

16.如圖,在邊長(zhǎng)為1的等邊三角形ABC中,點(diǎn)D是AC的中點(diǎn),點(diǎn)P是BC邊的中垂線MN上任一點(diǎn),則PC+PD的最小值為       

 

 

 

 

 

 

 

試題詳情

17.某校九年級(jí)學(xué)生準(zhǔn)備畢業(yè)慶典,打算用橄欖枝花圈來(lái)裝飾大廳圓柱.已知大廳圓柱高4米,底面周長(zhǎng)1米.由于在中學(xué)同學(xué)三年,他們打算精確地用花圈從上往下均勻纏繞圓柱3圈(如圖),那么螺旋形花圈的長(zhǎng)至少       米.

試題詳情

18.將正整數(shù)按如圖所示的規(guī)律排列下去.若用有序?qū)崝?shù)對(duì)(,)表示第排,從左到右第個(gè)數(shù),如(4,3)表示實(shí)數(shù)9,則(7,2)表示的實(shí)數(shù)是        

試題詳情

三、解答題(解答應(yīng)寫出必要的計(jì)算過(guò)程、推演步驟或文字說(shuō)明)

19.(本題滿分8分)

  計(jì)算:-22+2+20090--|1-tan60°|.

 

 

 

 

 

試題詳情

20.(本題滿分8分)

先化簡(jiǎn),再求值:,其中x=.

 

 

 

 

 

 

試題詳情

21.(本題滿分8分)

如圖,在平面直角坐標(biāo)系中,三角形②、③是由三角形①依次旋轉(zhuǎn)后所得的圖形.

(1)在圖中標(biāo)出旋轉(zhuǎn)中心P的位置,并寫出它的坐標(biāo);

(2)在圖上畫出再次旋轉(zhuǎn)后的三角形④.

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

23.(本題滿分10分)

(1)在坐標(biāo)軸兩處的括號(hào)內(nèi)填入適當(dāng)?shù)臄?shù)據(jù);

(2)求小欣早晨上學(xué)需要的時(shí)間.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

25.(本題滿分10分)

如圖,某海輪以30海里/小時(shí)的速度航行,在A點(diǎn)測(cè)得海面上油井P在正東方向,向北航行40分鐘后到達(dá)B點(diǎn),測(cè)得油井P在南偏東60°,此時(shí)海輪改向北偏東30°方向航行1小時(shí)到達(dá)C點(diǎn),求P,C之間的距離.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

26.(本題滿分10分)

對(duì)于點(diǎn)O、M,點(diǎn)M沿MO的方向運(yùn)動(dòng)到O左轉(zhuǎn)彎繼續(xù)運(yùn)動(dòng)到N,使OM=ON,且OM⊥ON,這一過(guò)程稱為M點(diǎn)關(guān)于O點(diǎn)完成一次“左轉(zhuǎn)彎運(yùn)動(dòng)”.

正方形ABCD和點(diǎn)P,P點(diǎn)關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P1,P1關(guān)于B左轉(zhuǎn)彎運(yùn)動(dòng)到P2,P2關(guān)于C左轉(zhuǎn)彎運(yùn)動(dòng)到P3,P3關(guān)于D左轉(zhuǎn)彎運(yùn)動(dòng)到P4,P4關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P5,…….

(1)請(qǐng)你在圖中用直尺和圓規(guī)在圖中確定點(diǎn)P1的位置;

(2)以D為原點(diǎn)、直線AD為軸建立直角坐標(biāo)系,并且已知點(diǎn)B在第二象限,A、P兩點(diǎn)的坐標(biāo)為(0,4)、(1,1),請(qǐng)你推斷:P2008、P2009、P2010三點(diǎn)的坐標(biāo).

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

27.(本題滿分12分)

已知如圖1,點(diǎn)P是正方形ABCD的BC邊上一動(dòng)點(diǎn),AP交對(duì)角線BD于點(diǎn)E,過(guò)點(diǎn)B作BQ⊥AP于G點(diǎn),交對(duì)角線AC于F,交邊CD于Q點(diǎn).

(1)小聰在研究圖形時(shí)發(fā)現(xiàn)圖中除等腰直角三角形外,還有幾對(duì)三角形全等.請(qǐng)你寫出其中三對(duì)全等三角形,并選擇其中一對(duì)全等三角形證明.

(2)小明在研究過(guò)程中連結(jié)PE,提出猜想:在點(diǎn)P運(yùn)動(dòng)過(guò)程中,是否存在∠APB=∠CPF?若存在,點(diǎn)P應(yīng)滿足何條件?并說(shuō)明理由;若不存在,為什么?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

28.(本題滿分12分)

如圖,已知拋物線y=x2-1與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求A、B、C三點(diǎn)的坐標(biāo);

(2)過(guò)點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積;

(3)在軸上方的拋物線上是否存在一點(diǎn)M,過(guò)M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與△PCA相似.若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

一、選擇題

1.C       2.C       3.A      4.B       5.A      6.D      7.B       8.A

二、填空題

9.x(x+2)(x-2)   10.20           11.2.9×109         12.x≤2              13.18    14.70

15.7     16.              17.5            18.23   

三、解答題

19.原式=-4+2+1-2-+1       …………………………4分

=-2-.          ……………………………………………8分

20.20.原式=,                         ……………………………………6分

當(dāng)x=時(shí),原式=3(+1).                       ……………………8分

21.(1)旋轉(zhuǎn)中心點(diǎn)P位置如圖所示,          ………………………2分

點(diǎn)P的坐標(biāo)為(0,1)                     ………………………4分

   (2)旋轉(zhuǎn)后的三角形④如圖所示.           ………………………8分

 

 

 

 

 

 

 

 

 

 

 

22.(1) 100,36               ……………………………………… 4分

   (2)1022                  ………………………………………8分

 

23.(1)第一次摸的牌

第二次摸的牌

(列表略)…………………………………………………………………………(4分)

(2)P(成軸對(duì)稱圖形)=    ………………………………………………(8分)

24.(1)x軸處填20,y軸處填1250;………………………………………………(4分)

(2)由圖象可知,點(diǎn)A的坐標(biāo)為(10,-2500),說(shuō)明媽媽騎車速度為250米/分鐘,并返回到家的時(shí)間為20分鐘,設(shè)小欣早晨上學(xué)時(shí)間為x分鐘,則媽媽到家后在B處追到小欣的時(shí)間為(x-20)分鐘,根據(jù)題意,得:50x=250(x-20),……………(7分)

解得:x=25,…………………………………………………………………………(9分)

答:小欣早晨上學(xué)時(shí)間為25分鐘.………………………………………………(10分)

25.AB=×30=20(海里),              ………………………………………………(2分)

在Rt△ABP中,BP===40(海里),………………………………(4分)

∵∠ABP=60°,∠CBN=30°,

∴∠PBC=90°…………………………………………………………………………(5分)

在Rt△BCP中,BC=1×30=30(海里),…………………………………………(7分)

∴PC===50(海里).………………………………(9分)

答:P,C之間的距離為50海里.…………………………………………………(10分)

26.(1)用直尺和圓規(guī)作圖,作圖痕跡清晰;     ………………………………(4分)

(2)點(diǎn)P(1,1)關(guān)于點(diǎn)A(0,4)左轉(zhuǎn)彎運(yùn)動(dòng)到P1(-3,3),……

點(diǎn)P1(-3,3)關(guān)于點(diǎn)B(-4,4)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P2(-5,3),

點(diǎn)P2(-5,3)關(guān)于點(diǎn)C(-4,0)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P3(-1,1),

點(diǎn)P3(-1,1)關(guān)于點(diǎn)D(0,0)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P4(1,1),   ………(6分)

點(diǎn)P4(1,1)關(guān)于點(diǎn)A(0,4)左轉(zhuǎn)彎運(yùn)動(dòng)到點(diǎn)P5(-3,3), 

點(diǎn)P5與點(diǎn)P1重合,點(diǎn)P6與點(diǎn)P2重合,……,      ………………………(8分)

點(diǎn)P2008的坐標(biāo)為(1,1),點(diǎn)P2009的坐標(biāo)為(-3,3),點(diǎn)P2010的坐標(biāo)為(-5,3).          …………………………………………………………………………(10分)

27.(1)△ABP≌△BCQ,△ABE≌△BCF,△AOE≌△BOF,△BEP≌△CFQ,△ACP≌△BDQ;(從中任寫出三對(duì)全等三角形)……………………………………3分

如證明△ABP≌△BCQ,

∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠BCG=90°,…………………4分

∵BQ⊥AP,∴∠BAP=∠CBQ, ……………………………………………………5分

∴△ABP≌△BCQ.……………………………………………………………………6分

證明其它三角形全等可參照給分.

(2)當(dāng)點(diǎn)P為BC的中點(diǎn),∠AFB=∠CFP.  ……………………………………8分

∵BP=CP,BP=CQ,∴CP=CQ,   ………………………………………………9分

∵AC是正方形ABCD的對(duì)角線,∴∠ACB=∠ACD=45°,………………………10分

∵CF=CF,∴△CFP≌△CFQ, ……………………………………………………11分

∴∠CPF=∠CQF,∵∠CQF=∠APB,∴∠APB=∠CPF. ……………………12分

證明△BEP≌△CFP可參照給分.

28.(1)令y=0,得x2-1=0,解得x=±1,令x=0,得y=-1

∴ A(-1,0),B(1,0),C(0,-1)          ……………………2分

(2)∵OA=OB=OC=1   ∴∠BAC=∠ACO=∠BCO=45°

∵AP∥CB,        ∴∠PAB=45°

      過(guò)點(diǎn)P作PE⊥x軸于E,則△APE為等腰直角三角形

令OE=a,則PE=a+1  ∴P(-a,a+1)

∵點(diǎn)P在拋物線y=x2-1上 ∴a+1=a2-1  

解得a1=2,a2=-1(不合題意,舍去)
      ∴PE=3????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

∴四邊形ACBP的面積=AB•OC+AB•PE

=?????????????????????????????????????????????? 6分

(3)假設(shè)存在.

∵∠PAB=∠BAC=45°   ∴PA⊥AC

∵M(jìn)Gx軸于點(diǎn)G,   ∴∠MGA=∠PAC=90°

在Rt△AOC中,OA=OC=   ∴AC=

在Rt△PAE中,AE=PE=   ∴AP= ???????????????????????????????????????????????????????? 7分

設(shè)M點(diǎn)的橫坐標(biāo)m,則M(m,m2-1)

①點(diǎn)M在y軸右側(cè)時(shí),則m>1

(?) 當(dāng)△AMG∽△PCA時(shí),有=

∵AG=m-1,MG=m2-1

即 

解得m1=1(舍去),m2=(舍去)

(?) 當(dāng)△MAG∽△PCA時(shí)有=

解得:m1=1(舍去),m2=2(舍去)

∴M(2,3)??????????????????????????????????????????????????????????????????????????????????????????????? 9分

② 點(diǎn)M在y軸左側(cè)時(shí),則m<-1,

(?) 當(dāng)△AMG∽△PCA時(shí)有=

∵AG=-m+1,MG=m2-1     

∴   

解得m1=1(舍去),m2= 

      ∴M()

(?) 當(dāng)△MAG∽△PCA時(shí)有= 

解得: m1=-1(舍去),m2=-4

∴M(-4,15)

∴存在點(diǎn)M,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與△PCA相似

M點(diǎn)的坐標(biāo)為(2,3),(),(-4,15)?????????????????????????????????????? 12分


同步練習(xí)冊(cè)答案