(其中為小于6的正常數(shù)) 查看更多

 

題目列表(包括答案和解析)

(本題滿分20分,其中第1小題4分,第2小題6分,第3小題10分)

已知是直線上的個不同的點(,、均為非零常數(shù)),其中數(shù)列為等差數(shù)列.

(1)求證:數(shù)列是等差數(shù)列;

(2)若點是直線上一點,且,求證:

(3) 設(shè),且當時,恒有都是不大于的正整數(shù), 且).試探索:在直線上是否存在這樣的點,使得成立?請說明你的理由.

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率與日產(chǎn)量(萬件)之間滿足關(guān)系:

(其中為小于6的正常數(shù))

(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

    (1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);

    (2)當日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率與日產(chǎn)量(萬件)之間大體滿足關(guān)系:(其中為小于6的正常數(shù))(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品),已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.(1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);(2)當日產(chǎn)量為多少時,可獲得最大利潤?

 

查看答案和解析>>

某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術(shù)水平的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,其次品率與日產(chǎn)量(萬件)之間大體滿足關(guān)系:

(其中為小于6的正常數(shù))

(注:次品率=次品數(shù)/生產(chǎn)量,如表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品)

已知每生產(chǎn)1萬件合格的儀器可以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元,故廠方希望定出合適的日產(chǎn)量.

(1)試將生產(chǎn)這種儀器的元件每天的盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);

(2)當日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:
他們研究過圖①中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù),由三角形數(shù)構(gòu)成數(shù)列{an};類似地,稱圖②中的1,4,9,16,…這樣的數(shù)為正方形數(shù).由正方形數(shù)構(gòu)成數(shù)列{bn}. 1225既是三角形數(shù)數(shù)列{an}中的第m項又是正方形數(shù)數(shù)列{bn}中第k項,則m+k=( 。

查看答案和解析>>

一.選擇題

1~10  BADDA    BCBCD

二.填空題

11.2      12.      13.      14.8        15.45

三.解答題

16.解:因為,所以 ………………………………(1分)

   由,解得 ………………………………(3分)

  因為,故集合應(yīng)分為兩種情況

(1)時,  …………………………………(6分)

(2)時,  ……………………………………(8分)

所以     …………………………………………………(9分)

假,則…………………………………………………………(10分)

真,則  ……………………………………………………………(11分)

故實數(shù)的取值范圍為………………………………………(12分)

17.解:(1)由1的解集有且只有一個元素知

        ………………………………………(2分)

時,函數(shù)上遞增,此時不滿足條件2

綜上可知  …………………………………………(3分)

 ……………………………………(6分)

(2)由條件可知……………………………………(7分)

時,令

所以……………………………………………………………(9分)

時,也有……………………………(11分)

綜上可得數(shù)列的變號數(shù)為3……………………………………………(12分)

18.解:(1)當時,………………………(1分)

 當時,……………………(2分)

,知又是周期為4的函數(shù),所以

…………………………(4分)

…………………………(6分)

故當時,函數(shù)的解析式為

………………………………(7分)

(2)當時,由,得

解上述兩個不等式組得…………………………………………(10分)

的解集為…………………(12分)

19.解:(1)當時,,……………………(2分)

時,

綜上,日盈利額(萬元)與日產(chǎn)量(萬件)的函數(shù)關(guān)系為:

…………………………………………………………(4分)

(2)由(1)知,當時,每天的盈利額為0……………………………(6分)

        當時,

當且僅當時取等號

所以時,,此時……………………………(8分)

            時,由

函數(shù)上遞增,,此時……(10分)

綜上,若,則當日產(chǎn)量為3萬件時,可獲得最大利潤

        若,則當日產(chǎn)量為萬件時,可獲得最大利潤…………(12分)

20.解:(1)將點代入

       因為直線,所以……………………………………(3分)

       (2)

為偶數(shù)時,為奇數(shù),……………(5分)

為奇數(shù)時,為偶數(shù),(舍去)

綜上,存在唯一的符合條件…………………………………………………(7分)

(3)證明不等式即證明

     成立,下面用數(shù)學(xué)歸納法證明

1當時,不等式左邊=,原不等式顯然成立………………………(8分)

2假設(shè)時,原不等式成立,即

    當

     =

,即時,原不等式也成立 ………………(11分)

根據(jù)12所得,原不等式對一切自然數(shù)都成立 ……………………………(13分)

21.解:(1)由……………………(1分)

     

     又的定義域為,所以

時,

時,為減函數(shù)

時,為增函數(shù)………………………(5分)

   所以當時,的單調(diào)遞增區(qū)間為

                         單調(diào)遞減區(qū)間為…………………(6分)

(2)由(1)知當時,遞增無極值………(7分)

所以處有極值,故

     因為,所以上單調(diào)

     當為增區(qū)間時,恒成立,則有

    ………………………………………(9分)

為減區(qū)間時,恒成立,則有

無解  ……………………(13分)

由上討論得實數(shù)的取值范圍為 …………………………(14分)

 

 

 


同步練習(xí)冊答案