題目列表(包括答案和解析)
在中,.
(Ⅰ)求的取值范圍;
(Ⅱ)若為銳角,求的最大值并求出此時角的大。
在中,.
(Ⅰ)求的取值范圍;
(Ⅱ)若為銳角,求的最大值并求出此時角的大小.
設,.
(1)求的取值范圍;
(2)設,試問當變化時,有沒有最小值,如果有,求出這個最小值,如果沒有,說明理由.
設有極值,
(Ⅰ)求的取值范圍;
(Ⅱ)求極大值點和極小值點.
一.選擇題:CBBA CAAA
二.填空題:9、; 10、 ; 11、;12、;
13、; 14、; 15、
三.解答題:
16.解:(I)tanC=tan[π-(A+B)]=-tan(A+B)
∵, ∴ ……………………5分
(II)∵0<tanB<tanA,∴A、B均為銳角, 則B<A,又C為鈍角,
∴最短邊為b ,最長邊長為c……………………7分
由,解得 ……………………9分
由 ,∴ ………………12分
17.解:(I)“油罐被引爆”的事件為事件A,其對立事件為,則P()=C…………4分
∴P(A)=1- 答:油罐被引爆的概率為…………6分
(II)射擊次數ξ的可能取值為2,3,4,5, …………7分
P(ξ=2)=, P(ξ=3)=C ,
P(ξ=4)=C, P(ξ=5)=C …………10分
ξ
2
3
4
5
故ξ的分布列為:
Eξ=2×+3×+4×+5×= …………12分
18.解(Ⅰ)當n = 1時,解出a1 = 3 , …………1分
又4sn = an2 + 2an-3 ①
當時 4sn-1 = + 2an-1-3 ②
①-② , 即…………3分
∴ ,()…………5分
是以3為首項,2為公差的等差數列 …………7分
(Ⅱ) ③
又 ④ …………9 分
④-③ …………11分
…………13分
…………14分
19. 解:(I)由題意得(100-x)?3000?(1+2x%)≥100×3000,
即x2-50x≤0,解得0≤x≤50, ……………………4分
又∵x>0 ∴0<x≤50; ……………………6分
(II)設這100萬農民的人均年收入為y元,
則y= =
=-[x-25(a+1)]2+3000+475(a+1)2 (0<x≤50) ………………9分
(i)當0<25(a+1)≤50,即0<a≤1,當x=25(a+1)時,y最大; ………………11分
(ii)當25(a+1)>50,即a >1,函數y在(0,50]單調遞增,∴當x=50時,y取最大值!13分
答:在0<a≤1時,安排25(a +1)萬人進入企業(yè)工作,在a>1時安排50萬人進入企業(yè)工作,才能使這100萬人的人均年收入最大 ………………14分
20.解證:(I)易得…………………………………………1分
的兩個極值點,的兩個實根,又>0
……………………………………………………3分
∴
∵,
……………………………………………7分
(Ⅱ)設則
由 ………………10分
∴在上單調遞增;在上單調遞減………………12 分
∴時,取得極大值也是最大值
,………………………………………14分
22.(本小題滿分14分)
解:(I)由圖形可知二次函數的圖象過點(0,0),(8,0),并且f(x)的最大值為16
則,
∴函數f(x)的解析式為…………………………4分
(Ⅱ)由得
∵0≤t≤2,∴直線l1與f(x)的圖象的交點坐標為(…………………………6分
由定積分的幾何意義知:
………………………………9分
(Ⅲ)令
因為x>0,要使函數f(x)與函數g(x)有且僅有2個不同的交點,則函數
的圖象與x軸的正半軸有且只有兩個不同的交點
∴x=1或x=3時,
當x∈(0,1)時,是增函數;
當x∈(1,3)時,是減函數
當x∈(3,+∞)時,是增函數
∴……………12分
又因為當x→0時,;當
所以要使有且僅有兩個不同的正根,必須且只須
即, ∴m=7或
∴當m=7或時,函數f(x)與g(x)的圖象有且只有兩個不同交點!14分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com