題目列表(包括答案和解析)
(本小題滿分12分)在一個(gè)不透明的盒子中,放有標(biāo)號(hào)分別為1,2,3的三個(gè)大小相同的小球,現(xiàn)從這個(gè)盒子中,有放回地先后取得兩個(gè)小球,其標(biāo)號(hào)分別為,記. (1)求隨機(jī)變量的最大值,并求事件“取得最大值”的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.
(本小題滿分12分)在我校值周活動(dòng)中,甲、乙等五名值周生被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名值周生.
(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量X為這五名值周生中參加A崗位服務(wù)的人數(shù),求X的分布列及期望.
(本小題滿分12分)
在一次體操選拔賽中,教練組設(shè)置了難度不同的甲、乙兩個(gè)系列,每個(gè)系列都有A和B兩個(gè)動(dòng)作.比賽時(shí)每位運(yùn)動(dòng)員自選一個(gè)系列完成,兩個(gè)動(dòng)作得分之和為該運(yùn)動(dòng)員的成績(jī).
假設(shè)每個(gè)運(yùn)動(dòng)員完成每個(gè)系列中的兩個(gè)動(dòng)作的得分是相互獨(dú)立的.根據(jù)賽前訓(xùn)練統(tǒng)計(jì)數(shù)據(jù),某運(yùn)動(dòng)員完成甲系列和乙系列的情況如下表:
表1:甲系列 表2:乙系列
|
|
現(xiàn)該運(yùn)動(dòng)員最后一個(gè)出場(chǎng),之前其他運(yùn)動(dòng)員的最高得分為115分.
(Ⅰ)若該運(yùn)動(dòng)員希望獲得該項(xiàng)目的第一名,應(yīng)選擇哪個(gè)系列?說(shuō)明理由,并求其獲得第一名的概率;
(Ⅱ)若該運(yùn)動(dòng)員選擇乙系列,求其成績(jī)的分布列及其數(shù)學(xué)期望.
(本小題滿分12分)
在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)且斜率為k的直線l與橢圓有兩個(gè)不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A、B,是否存在常數(shù)k,使得向量與共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.
(本小題滿分12分)
在這個(gè)自然數(shù)中,任取個(gè)不同的數(shù).
(1)求這個(gè)數(shù)中至少有個(gè)是偶數(shù)的概率;
(2)設(shè)為這個(gè)數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為,則有兩組相鄰的數(shù)1,2和2,3,此時(shí)的值是).求隨機(jī)變量的分布列及其數(shù)學(xué)期望。
1.B 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.C 10.B
11.A 12.D
【解析】
1.,所以選B.
2.的系數(shù)是,所以選B.
3.,所以選.
4.為鈍角或,所以選C
5.,所以選C.
6.,所以選B.
7.,所以選D.
8.化為或,所以選B.
9.將左移個(gè)單位得,所以選A.
10.直線與橢圓有公共點(diǎn),所以選B.
11.如圖,設(shè),則,
,
,從而,因此與底面所成角的正弦值等于.所以選A.
12.畫(huà)可行域 可知符合條件的點(diǎn)是:共6個(gè)點(diǎn),故,所以選D.
二、
13.185..
14.60..
15.,由,得
.
16..如圖:
如圖,可設(shè),又,
.
當(dāng)面積最大時(shí),.點(diǎn)到直線的距離為.
三、
17.(1)由三角函數(shù)的定義知:.
(2)
.
18.(1)設(shè)兩年后出口額恰好達(dá)到危機(jī)前出口額的事件為,則.
(2)設(shè)兩年后出口額超過(guò)危機(jī)前出口額的事件為,則.
19.(1)設(shè)與交于點(diǎn).
從而,即,又,且
平面為正三角形,為的中點(diǎn),
,且,因此,平面.
(2)平面,∴平面平面又,∴平面平面
設(shè)為的中點(diǎn),連接,則,
平面,過(guò)點(diǎn)作,連接,則.
為二面角的平面角.
在中,.
又.
20.(1)
(2)
又
綜上:.
21.(1)的解集為(1,3)
∴1和3是的兩根且
由此得
時(shí),時(shí),
在處取得極小值
③
由式①、②、③聯(lián)立得:
.
(2)
∴當(dāng)時(shí),在上單調(diào)遞減,
當(dāng)時(shí),
當(dāng)時(shí),在[2,3]上單調(diào)遞增,
22.(1)由得
∴橢圓的方程為:.
(2)由得,
又
設(shè)直線的方程為:
由得
由此得. ①
設(shè)與橢圓的交點(diǎn)為,則
由得
,整理得
,整理得
時(shí),上式不成立, ②
由式①、②得
或
∴取值范圍是.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com