有以下四個命題: 查看更多

 

題目列表(包括答案和解析)

有以下四個命題:
①f(x)=
1
x
在[0,1]上連續(xù);
②若f(x)是(a,b)內(nèi)的連續(xù)函數(shù),則f(x)在(a,b)內(nèi)有最大值和最小值;
lim
x→
π
2
2sin2x
cosx
=4;
④若f(x)=
x
(x≥0)
x+1(x<0).
lim
x→0
f(x)=0.
其中正確命題的序號是
 
.(請把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

有以下四個命題:
①對于任意實數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設(shè)Sn 是等差數(shù)列{an}的前n項和,若a2+a6+a10為一個確定的常數(shù),則S11也是一個確定的常數(shù);
③關(guān)于x的不等式ax+b>0的解集為(-∞,1),則關(guān)于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

有以下四個命題:
①函數(shù)y=sin2x和圖象可以由y=sin(2x+
π
4
)
向右平移
π
4
個單位而得到;
②在△ABC中,若bcosB=ccosC,則△ABC一定是等腰三角形;
③|x|>3是x>4的必要條件;
④已知函數(shù)f(x)=sinx+lnx,則f′(1)的值為1+cos1.寫出所有真命題的序號
 

查看答案和解析>>

有以下四個命題:
(1)2n>2n+1(n≥3);
(2)2+4+6+…+2n=n2+n+2(n≥1);
(3)凸n邊形內(nèi)角和為f(n)=(n-1)π(n≥3);
(4)凸n邊形對角線條數(shù)f(n)=
n(n-2)2
(n≥4).
其中滿足“假設(shè)n=k(k∈N,k≥n0).時命題成立,則當(dāng)n=k+1時命題也成立.”但不滿足“當(dāng)n=n0(n0是題中給定的n的初始值)時命題成立”的命題序號是
 

查看答案和解析>>

有以下四個命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個增區(qū)間是[
12
,
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對稱.
其中正確的命題是
 
.(填上正確命題的序號)

查看答案和解析>>

一、選擇題:

1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B  11. A   12. B

二、填空題:

13. 5;14. 18 ;15. 2 ;16. ③④

三、解答題:

17. 解:(1) 由已知得,即,………………2分

所以數(shù)列{}是以1為首項,公差2的等差數(shù)列.…………………………4分

.………………………………………5分

(2) 由(1)知:,從而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的單調(diào)遞增區(qū)間為[] (k∈Z)……………………12分

19. (1)解:把4名獲書法比賽一等獎的同學(xué)編號為1,2,3,4,2名獲繪畫比賽一等獎的同學(xué)編號為5,6.從6名同學(xué)中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個.…………………4分

(1) 從6名同學(xué)中任選兩名,都是書法比賽一等獎的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個.…………………………6分

∴選出的兩名志愿者都是書法比賽一等獎的概率.…………………8分

(2) 從6名同學(xué)中任選兩名,一名是書法比賽一等獎,另一名是繪畫比賽一等獎的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個.………………………10分

∴選出的兩名志愿者一名是書法比賽一等獎,另一名是繪畫比賽一等獎的概率是.………………………12分

20. 解:(1) 取AB的中點(diǎn)G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點(diǎn),∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)與圓相切,則,即,所以,

………………………3分

則由,消去y得:  (*)

由Δ=,∴,………………4分

(2) 設(shè),由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)為

由弦長公式得

 … 10分

所以………………………12分

22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分

是奇函數(shù).∴=………………………2分

∴當(dāng)x∈(0,1]時, ,…………………3分

………………………………4分

(2) 當(dāng)x∈(0,1]時,∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是單調(diào)遞增函數(shù).…………………9分

(3) 解:當(dāng)時, 在(0,1]上單調(diào)遞增. ,

(不合題意,舍之),………………10分

當(dāng)時,由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此時∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 

 


同步練習(xí)冊答案